- Код статьи
- 10.31857/S0015323025050084-1
- DOI
- 10.31857/S0015323025050084
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 126 / Номер выпуска 5
- Страницы
- 589-597
- Аннотация
- Исследовано влияние термо- и механоциклирования на структурно-фазовые превращения и свойства метастабильного (+)-сплава с эффектом памяти формы Cu–39.5 мас.% Zn. Температуры начала и конца прямого и обратного мартенситного превращения в сплаве Cu–39.5 мас.% Zn определены из температурных зависимостей электросопротивления. Механические свойства измерены в механоциклических криоиспытаниях на растяжение. Структура и фазовые превращения изучены методами оптической, растровой и просвечивающей электронной микроскопии и рентгенофазового анализа. Обнаружено увеличение критических температур начала прямых термоупругих мартенситных превращений с ростом числа термоциклов “охлаждение–нагрев”. Проанализированы особенности твидового контраста на электронно-микроскопических изображениях и диффузных эффектов на микроэлектронограммах в зависимости от количества термоциклов. Установлено увеличение плотности дислокаций при термоциклировании через температуру мартенситного перехода и объяснена их роль в стабилизации температур фазовых превращений и эффекта памяти формы. При механоциклировании в мартенситном состоянии обнаружен эффект ферроупругости.
- Ключевые слова
- (+)-сплав Cu—39.5 мас.% Zn термоупругое мартенситное превращение электросопротивление эффекты памяти формы микроструктура фазовый состав аустенит мартенсит
- Дата публикации
- 21.11.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. Perkins J. (Ed.) Shape Memory Effects in Alloys. Plenum. London: UK, 1975. 583 p.
- 2. Варлимонт Х., Дилей Л. Мартенситные превращения в сплавах на основе меди, серебра и золота. М.: Наука, 1980. 205 с.
- 3. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
- 4. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys; Butterworth-Heineman: London, UK, 1990. 301 p.
- 5. Материалы с эффектом памяти формы: Справ. изд. / Под ред. В. А. Лихачева. Т. 1–4. СПб.: Изд-во НИИХ СПбГУ, 1997, 1998.
- 6. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- 7. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires // Appl. Phys. Letters. 2012. V. 101. P. 073904.
- 8. Buehler W.J., Wang F.E. A summary of recent research on the nitinol alloys and their potential application in ocean engineering // Ocean. Eng. 1968. V. 1. P. 105–120.
- 9. Zhang L., He Z.Y., Tan J., Zhang Y.Q., Stoica M., Prashanth K.G., Cordill M.J., Jiang Y.H., Zhou R., Eckert J. Rapid fabrication of function-structure-integrated NiTi alloys: Towards a combination of excellent superelastisity and favorable bioactivity // Intermetallic. 2017. V. 82. P. 1–13.
- 10. Snodgrass R., Erickson D. A multistage elastocaloric refrigerator and heat pump with 28 K temperature span // Sci. Rep. 2019. V. 9. P. 18532.
- 11. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. V. 12. P. 2616–2640.
- 12. Sedlak P., Seiner H., Landa M., Novák V., Šittner P., Manosa L.I. Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy // Acta Mater. 2005. V. 53. P. 3643–3661.
- 13. Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects // J. Mater. Research. 2014. V. 29. No. 16. P. 1681–1698.
- 14. Pushin V.G., Kuranova N.N., Svirid A.E., Uksusnikov A.N., Ustyugov Y.M. Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives // Metals. 2022. V. 12. P. 1289 (32 pages).
- 15. Hull D. Spontaneous Transformation of Metastable β-brass in Thin Foils // Philosoph. Magazine. 1962. V. 7. P. 537–550.
- 16. Kajiwara S. Strain-induced martensite structures of a Cu-Zn alloy // J. Phys. Soc. Japan. 1971. V. 30. P. 1757.
- 17. Hornbogen E. The effect of variables on martensitic transformation temperatures // Acta Metal. 1985. V. 33. No. 4. P. 595–601.
- 18. Xiao G.H., Tao N.R., Lu K. Microstructures and mechanical properties of a Cu-Zn alloy subjected to cryogenic dynamic plastic deformation // Mater. Sci. Eng. A. 2009. V. A513–514. P. 13–21.
- 19. Huang Y.T., Wang T.F., Mei Y. A study of internal friction, electron resistance and shape change Cu-Zn and Cu-Zn-Al alloys during phase transformation use simulaneous measurement method // Rev. of Progress in Quantit. Nondest. Evalut. 1990. V. 9. P. 1611–1616.
- 20. Yasuda H.Y., Sakata T., Umakoshi Y. Variant selection in transformation texture from the β to α phase in Cu-40 mass% Zn alloy // Acta Metall. 1999. V. 47. No. 6. P. 1923–1933.
- 21. Лободюк В.А., Эстрин Э.И. Изотермическое мартенситное превращение // УФН. 2005. Т. 175. № 7. С. 745–765.
- 22. Свирид А.Э., Куранова Н.Н., Пушин В.Г., Афанасьев С.В. Особенности структуры метастабильных сплавов на основе Cu-Zn с эффектом памяти формы // ФММ. 2024. Т. 125. № 7. С. 821–830.
- 23. Куранова Н.Н., Пушин В.Г., Свирид А.Э., Давыдов Д.И. Мартенситные фазы в метастабильных сплавах на основе Cu–Zn с эффектом памяти формы // ФММ. 2024. Т. 125. № 8. С. 956–963.
- 24. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Афанасьев С.В., Давыдов Д.И., Сташкова Л.А. Особенности структуры и механические свойства метастабильного (α+β)-сплава Cu-39.5 мас.% Zn с эффектом памяти формы, подвергнутого механотермической обработке // ФММ. 2024. Т. 125. № 8. С. 986–994.
- 25. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Афанасьев С.В., Давыдов Д.И., Сташкова Л.А. Влияние горячей прокатки на фазовый состав, структуру и механические свойства метастабильного (α+β)-сплава на основе Cu–41 мас.% Zn с эффектом памяти формы // ФММ. 2024. Т. 125. № 9. С. 1093–1099.
- 26. Хирш П., Хови А., Николсон Р., Пэшли Д., Уэлан М. Электронная микроскопия тонких кристаллов. М.: Мир, 1968. 573 с.
- 27. Курдюмов Г.В., Утевский Л.М., Энтин Р.И. Превращения в железе и стали. М.: Наука, 1977. 238 с.
- 28. Малышев К.А., Уваров А.И., Романова Р.Р., Пушин В.Г. Трип-эффект в сплавах железо-никель-титан, упрочненных фазовым наклепом и старением // ФММ. 1976. Т. 41. Вып. 5. С. 992–1001.
- 29. Лотков А.И., Гришков В.Н., Жапова Д.Ю., Гусаренко А.А., Тимкин В.Н. Влияние пластической деформации в мартенситном состоянии на развитие эффектов сверхэластичности и памяти формы в сплавах на основе никелида титана // Письма в ЖТФ. 2018. Т. 44. Вып. 21. С. 97–104.