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1. ВВЕДЕНИЕ
Анализ взаимосвязи электронной структуры 

и магнитных свойств железоникелевых сплавов 
остается важной проблемой в теории и прило-
жениях [1, 2]. Значительная часть теоретических 
работ посвящена исследованию фазовой диа-
граммы (см., напр., [3, 4]).

В расчетах магнитных характеристик ГЦК-же-
лезоникелевых сплавов при конечных темпера-
турах нелокальными спиновыми корреляциями 
либо пренебрегают, используя приближение ко-
герентного потенциала и динамическую теорию 
среднего поля (ПКП+ДТСП; см., напр., [5, 6]), 
либо описывают их с помощью различных при-
ближений для эффективных гамильтонианов с 
классическими спинами (см., напр., [7–11]).

Одновременный учет квантового характера 
и нелокальности спиновых флуктуаций реали-
зован пока лишь в динамической теории спи-
новых флуктуаций (ДТСФ) [12]. Использование 
ДТСФ позволило рассчитать температурную 
зависимость магнитных характеристик инвар-
ного сплава Fe0.65Ni0.35 [13, 14] и получить зави-
симость температуры Кюри разупорядоченного 
ГЦК-сплава FexNi1–x от концентрации x [15].

В настоящей работе для разупорядочен-
ного ГЦК-сплава FexNi1–x детально изучается 

зависимость различных магнитных характери-
стик: спиновых флуктуаций, среднего и локаль-
ного магнитных моментов — от температуры и 
концентрации x. Мы исследуем, как меняется за-
висимость среднего и локального магнитных мо-
ментов от x с ростом температуры (качественный 
характер этих кривых в сплавах был исследован в 
[16]), и анализируем сходство зависимости маг-
нитных моментов и температуры Кюри от x. Про-
блема рассматривается в перенормированной га-
уссовой аппроксимации динамической теории 
спиновых флуктуаций (ДТСФ-ПГА) [12, 14] с ис-
пользованием спин-поляризованных плотностей 
электронных состояний, рассчитанных в ККР-
ПКП [15]. Результаты ДТСФ-ПГА сравниваются 
с другими расчетами и экспериментом.

Изложение построено следующим образом. 
В разделе 2 кратко описана расчетная схема. В 
разделе 3 дан обзор теории и эксперимента, свя-
занных с кривой Слэтера–Полинга. В разделе 4 
приведены результаты при конечных температу-
рах. В разделе 5 сформулированы выводы.

2. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ
В основе ДТСФ лежит квадратичная аппрок-

симация свободной энергии F V( ) во флуктуи-
рующем обменном поле V , которая позволяет 
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выполнить самосогласованное усреднение по 
всем конфигурациям поля. При конечной тем-
пературе T  (в энергетических единицах) решает-
ся система нелинейных уравнений для средних 
квадратов флуктуаций обменного поля на узле:
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где ns — число электронов с проекцией спина 
� = ,� � или ±1, ne — полное число электронов 
(на атом и полосу). В приведенных соотноше-
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— средняя одноузельная функция Грина, где  
� �( ) — немагнитная плотность электронных со-
стояний (ПЭС) на атом, полосу и спин, ��� �( ) — 
флуктуационный вклад в собственно-энергети-
ческую часть, вычисляемый по формуле:
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В ДТСФ-ПГА делается перенормировка ква-
дратичной аппроксимации свободной энергии 
во флуктуирующем поле F V( ) за счет членов вы-
сокого порядка по V . В окончательных уравне-
ниях это приводит к перенормировке среднего 
спина и восприимчивости: 
	 � �s sz z= (1 ) , ( ) = (1 3 ) ( ).� �� � � � � �� �

q q 	 (4)

Поправочный коэффициент η имеет вид:
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где W  — ширина d-полосы, ��L(0) — локальная 
статическая восприимчивость.

При T = 0 средние квадраты флуктуаций 
� ��V�

2  обращаются в нуль и система переходит в 
систему уравнений теории среднего поля Стоне-
ра (2) и (3). Это дает возможность найти эффек-
тивную константу U  по известному магнитному 

моменту m Tz ( = 0), после чего при T ≠ 0 исходная 
система решается методом продолжения по па-
раметру относительно переменных � ��Vx

2 , � ��Vz
2 , 

 � �Vz , m и ��� �( ) [17]. Вычисление температурной 
зависимости магнитных характеристик от па-
раметров выполняется с помощью программы 
MAGPROP [18].

Квадраты среднего sz
2 2� � �s  и локально-

го sL
2 2� � �s  спинов отличаются на величину 

среднеквадратичной спиновой флуктуации 
�s2 2( )� � � � � �s s : 

s s szL
2 2 2= .� �

(Здесь � �…  — квантовостатистическое сред-
нее при температуре T .) Спиновые флуктуации 
складываются из флуктуаций при T = 0 ("нуле-
вых") и температурных флуктуаций:

∆ ∆ ∆s s szp
2 2 2= .+ temp

В ДТСФ мы рассматриваем только темпера-
турные флуктуации, полагая ∆szp

2 = 0. Считаем, 
что “нулевые” флуктуации уже учтены за счет 
перенормировки константы U . При T = 0 тем-
пературная флуктуация тоже обращается в нуль: 
Dstemp

2 = 0. Тогда средний m T gN s Tz d z( ) = ( )[ ]µB  и 
локальный m T gN s TdL L B( ) = ( )[ ]µ  магнитные мо-
менты при T = 0 совпадают: m mz (0) = (0)L . При 
конечной температуре, решая систему уравне-
ний ДТСФ-ПГА (1)–(5), находим локальный 
магнитный момент по формуле:
m T m V T V Vz zL L( ) / (0) = [( ( ) ( ) ) / (0) ] .2 2 2 1/2� � � � � � ��

3. МАГНИТНЫЙ МОМЕНТ  
ПРИ T = 0

Магнитный момент ферромагнитных метал-
лов и сплавов при T = 0 довольно хорошо опи-
сывается правилом Слэтера, которое обобщает 
правило Хунда для атома на случай металлов. По 
правилу Слэтера магнитный момент (в единицах 
mB) равен числу нескомпенсированных по спину 
d-электронов на атом (см. [21]). Для ферромаг-
нитных металлов и сплавов получаем: 
	 m N N Nz d( ) = 2 ,e e− 	 (6)
где среднее число d-электронов на атом в метал-
ле N N nde e=  может быть дробным.1 Обоснова-
ние (6) вытекает из теории Стонера. Из (2) и (3) 
следует

m N n n N n Nz d d= ( ) = 2 .↑ ↓ ↑− − e

Если полоса d-состояний со спином вверх 
целиком заполнена (как в Co и Ni), а значит 
1	 Обобщения правила Слэтера были предложены в 

работе [22] (см. также [12, Глава 13]).
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дальнейшая поляризация не приводит к росту 
магнитного момента, получаем линейную зави-
симость, убывающую под углом 45 градусов с ро-
стом Ne. Максимальный магнитный момент на-
ходится между Fe и Co и отвечает почти целиком 
заполненной d-полосе. Зависимость магнитного 
момента от среднего числа электронов на атом, 
известная как кривая Слэтера–Полинга [19], да-
ет хорошее приближение для сплавов металлов с 
близкими атомными номерами, в частности Fe-
Co, Co–Ni и Fe–Ni (рис. 1)2.

Изложенные выше факты были подтверж-
дены нашими расчетами mz при T = 0 в теории 
Стонера [16]. В рамках теории Стонера можно 
считать, что сплавление приводит лишь к сме-
щению уровня Ферми [23]. Поэтому расчеты 
[16] были выполнены с помощью варьирования 
Ne для ПЭС железа, кобальта и никеля. Однако 
расчеты, выполненные при конечных температу-
рах, показали, что поведение кривой Слэтера–
Полинга в теории Стонера и в ДТСФ имеет даже 
качественно различный характер, из-за того, что 
теория Стонера полностью игнорирует спино-
вые флуктуации.

4. РЕЗУЛЬТАТЫ ПРИ КОНЕЧНЫХ 
ТЕМПЕРАТУРАХ

Мы исследуем разупорядоченный ГЦК-сплав 
FexNi1–x при концентрациях железа x от 0.1 до 

2	 Как видно из рис. 1, для ГЦК-сплавов Fe–Co и Fe–
Ni при больших концентрациях железа наблюдаются 
ответвления от кривой Слэтера–Полинга.

0.63, используя те же исходные немагнитные 
ПЭС при T = 0, что и в работе [15]. Спин-поля-
ризованные ПЭС, рассчитанные в ККР-ПКП 
для ГЦК Fe Nix x1-  при x от 0.1 до 0.6 [15], нахо-
дятся в хорошем согласии со спин-поляризо-
ванными ПЭС для x = 0.4 и 0.6, вычисленны-
ми в [24]. Немагнитная ПЭС сплава вычислена 
по схеме, описанной в работе [13]. Полученные 
ПЭС сглажены с помощью свертки с функцией 
Лоренца полуширины Г = 0.001W для удаления 
нефизических пиков в зонном расчете, который 
полностью игнорирует затухание одноэлектрон-
ных состояний. ПЭС сплавов Fe Nix x1- , норми-
рованные на одно d-состояние (на атом, поло-
су и спин), изображены на рис. 2. Зависимость 
магнитного момента при T = 0 от числа электро-
нов лежит на правой ветви кривой Слэтера–По-
линга, отвечающей сплавам с ГЦК-решеткой 
(рис. 1).

Результаты расчетов магнитных характери-
стик в ДТСФ-ПГА приведены на рис. 3. Темпе-
ратурная зависимость магнитного момента на-
ходится в хорошем согласии с экспериментом 
[25]. Температурная зависимость остальных ха-
рактеристик хорошо согласуется с результатами 
расчетов, приведенными в [12] для чистых Fe, 
Co и Ni. Так, продольные спиновые флуктуации 
� ��Vz

2  преобладают в ГЦК Fe Nix x1-  при концен-
трациях x = 0.1–0.3, как в чистом Ni. Продоль-
ные � ��Vz

2  и поперечные � ��Vx
2  спиновые флук-

туации примерно совпадают при концентрациях 

3	При концентрациях железа x > 0.7 ГЦК-сплав FexNi1–x 
становится антиферромагнитным.
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x = 0.4–0.5, как в чистом Co. Наконец, попе-
речные спиновые флуктуации � ��Vx

2  преобла-
дают при концентрациях x = 0.6, как в чистом 
Fe. Аналогично, локальный момент mL растет с 

температурой при x = 0.1–0.3, как в Ni, практи-
чески постоянен при x = 0.4, как в Co, и убывает 
с температурой при x = 0.5–0.6, как в Fe. Одно-
родная парамагнитная восприимчивость c0(0) 
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� ��Vz
2  (- - - -) в единицах квадрата среднего поля Vz

2 при T = 0, локальный магнитный момент m mzL / 0 (⋅ ⋅ ⋅ ⋅ ⋅ ⋅) и обратная 
парамагнитная восприимчивость ��1 (� � � � � � �) в единицах k TB C

exp
B/µ2  разупорядоченного ГЦК-сплава Fe Nix x1-  при концен-

трациях железа 0.1 ≤ x ≤ 0.6, рассчитанные в ДТСФ-ПГА как функции относительной температуры T T/ C
exp.
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удовлетворяет закону Кюри–Вейса при всех x, 
как и для чистых металлов.

Зависимость температуры Кюри от концентра-
ции никеля приведена на рис. 4. Эксперименталь-
ная кривая имеет максимум вблизи 70 ат.% Ni. 
Кривая в ДТСФ-ПГА находится в хорошем со-
гласии с экспериментальной кривой [3, 26]. Для 
сравнения приведены результаты локальных при-
ближений: статического приближения ПКП [27] 
и динамического приближения ПКП+ДТСП [6]. 
Как видно, в статике [27] максимум TC заметно 
смещен в сторону больших концентраций Ni 4. 
Расчет в одноузельном динамическом приближе-
нии ПКП+ДТСП [6] приводит к существенным 
отличиям от результатов статики [27].

Результаты, полученные с помощью различ-
ных приближений для эффективных гамиль-
тонианов с классическими спинами [9, 10, 15], 
дают хорошее количественное согласие с экспе-
риментом при некоторых концентрациях, но не 
дают правильного хода температурной зависи-
мости TC от концентрации в целом. В частности, 
максимум TC в расчетах [9, 10, 15] заметно сме-
щен в сторону малых концентраций Ni, вопреки 
эксперименту (рис. 4).

Зависимость температуры Кюри TC от сред
него числа электронов на атом для сплавов Fe, 
Co и Ni приведена на рис. 5. У этой зависимо-
сти есть некоторое сходство с кривой Слэтера– 

4	В работе [28] была сделана попытка выйти за преде-
лы одноузельного приближения в статике [27], но за-
метных отличий для сплавов Fe–Ni она не принесла.

Полинга (рис. 1). Однако различия в поведе-
нии TC для ГЦК-сплавов Fe–Ni и Co–Ni (как и 
для ОЦК-сплавов Fe–Ni и Co–Ni) значительно 
более заметные, чем в поведении mz при T = 0. 
Кроме того, для разупорядоченного ГЦК-сплава 
FexNi1–x максимум температуры Кюри TC дости-
гается при больших концентрациях никеля, чем 
максимум зависимости mz при T = 0 на кривой 
Слэтера–Полинга.

Кривые среднего магнитного момента mz, как 
функции концентрации никеля при конечных 
температурах, приведены на рис. 6. Как видно, 
с ростом температуры кривая Слэтера–Полин-
га смещается к нулю. Зависимость mz от концен-
трации Ni при комнатных температурах остает-
ся практически прямой линией, параллельной 
кривой Слэтера–Полинга, в полном согласии с 
экспериментом [30]. При дальнейшем росте тем-
пературы зависимость магнитного момента mz 
от концентрации искривляется и становится по-
хожей на зависимость температуры Кюри TC от 
концентрации (рис. 4). Максимум mz постепен-
но смещается в сторону больших концентраций 
Ni и при высоких температурах находится между 
50 ат.% и 60 ат.%Ni. Эти результаты находятся в 
качественном согласии с результатами расчетов 
в ДТСФ, которые были получены с помощью ва-
рьирования числа d-электронов для ПЭС желе-
за, кобальта и никеля в нашей работе [16].

Зависимости локального магнитного момен-
та как функции концентрации никеля при раз-
личных температурах представлены на рис. 7 
(температуры те же, что на рис. 6). Как видно, 
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линейная зависимость локального магнитно-
го момента от концентрации слабо меняется с 
ростом температуры вплоть до комнатных тем-
ператур. При дальнейшем росте температу-
ры убывающая зависимость остается, но раз-
брос значений локального момента постепенно 
уменьшается. Экстраполяция наших результатов 
при TC находится в разумном согласии с экспе-
риментальными значениями mL, полученными в 
нейтронном рассеянии: 1.55–1.7 для Fe и 0.6–0.9 
для Ni (подробнее см. [12, 31] и ссылки там). Вид 
зависимости локального момента от концентра-
ции принципиально отличается от зависимо-
стей температуры Кюри и среднего магнитного 
момента от концентрации (рис. 4 и 6). В частно-
сти, максимум mL достигается при концентра-
ции никеля 1 = 0.4- x  при всех температурах, 
кроме температур вблизи T = 600 K, где он не-
много смещается в сторону больших концентра-
ций никеля: 1 = 0.5- x .

Качественный ход зависимости локального 
момента от концентрации при высоких темпера-
турах был верно предсказан в наших ДТСФ-рас-
четах [16]. Однако для реального сплава кривые 
при высоких температурах оказались более вы-
пуклыми кверху (рис. 7), чем предсказывал наш 
предварительный анализ.

5. ЗАКЛЮЧЕНИЕ
Одновременный учет квантового и нелокаль-

ного характера спиновых флуктуаций в ДТСФ-
ПГА позволил рассчитать зависимости среднего 
и локального магнитных моментов, спиновых 

флуктуаций и парамагнитной восприимчи-
вости от температуры для разупорядоченного 
ГЦК-сплава FexNi1–x при 0.1 ≤ x ≤ 0.6.

Температурная зависимость магнитного мо-
мента находится в хорошем согласии с экспе-
риментом. Продольные спиновые флуктуации 
преобладают при концентрациях x = 0.1–0.3 (как 
в чистом Ni), продольные и поперечные флукту-
ации примерно совпадают при концентрациях 
x = 0.4–0.5 (как в Co) и, наконец, поперечные 
флуктуации преобладают при концентрациях 
x = 0.6 (как в Fe).

Зависимость среднего магнитного момента от 
концентрации остается практически прямой ли-
нией, параллельной кривой Слэтера–Полинга 
вплоть до комнатных температур, в полном со-
гласии с экспериментом. При дальнейшем росте 
температуры зависимость магнитного момен-
та от концентрации искривляется и становится 
похожей на зависимость температуры Кюри от 
концентрации: имеет ярко выраженный макси-
мум между 50 ат.% и 60 ат.%Ni.

Зависимость локального магнитного момен-
та от концентрации тоже остается практически 
линейной вплоть до комнатных температур. Од-
нако эта прямая не параллельна кривой Слэте-
ра–Полинга, и ее наклон уменьшается с ростом 
температуры. При дальнейшем росте темпера-
туры зависимость локального магнитного мо-
мента от концентрации остается убывающей, но 
становится нелинейной. Максимум локального 
момента достигается при концентрациях 40 ат.% 
и 50 ат.%Ni.
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Детальное изучение парамагнитных свойств 
ГЦК-железоникелевых сплавов в ДТСФ-ПГА 
является задачей нашего дальнейшего исследо-
вания.
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MAGNETIC PROPERTIES OF FCC IRON-NICKEL ALLOYS  
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For the disordered fcc alloy FexNi1−x, we study the dependence of the Curie temperature, average and local 
magnetic moments on the concentration x. We show how the dependence of the average and local magnetic 
moments on the concentration changes with temperature. The problem is considered in the renormalized 
Gaussian approximation of the dynamic spin-fluctuation theory. The numerical results are in good agree-
ment with the experiment.
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