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ВВЕДЕНИЕ
Изучение эволюции структуры ОЦК-пере-

ходных металлов при пластической деформации 
на протяжении нескольких десятилетий вызы-
вает неизменно интерес исследователей [1-6]. 
Наиболее существенными отличиями ОЦК-ме-
таллов от других являются сильная температур-
ная зависимость предела текучести и достаточ-
но высокое значение энергии дефекта упаковки 
(ЭДУ) [1, 7]. Высокая ЭДУ облегчает процессы 
поперечного скольжения и переползания, спо-
собствующие образованию ячеистых структур. 
Тогда как температурная зависимость предела 
текучести затрудняет перестройку дислокаций 
в энергетически более выгодные конфигурации, 
такие как ячеистые структуры или субзерна, при 
низких температурах деформации. Деформа-
ция всех ОЦК-металлов осуществляется путем 
появления и движения винтовых дислокаций. 
Известно [2], что подвижность винтовых дисло-
каций существенно ниже, чем краевых. При от-
носительно низких температурах подвижность 
винтовых дислокаций контролируется образо-
ванием двойного перегиба (кинка), поскольку 
распространение перегиба происходит легче, 

чем движение всей линии дислокации. Выше 
определенной температуры, называемой кри-
тической Tc, дислокация легко преодолевает ба-
рьер Пайерлса под влиянием термической ак-
тивации. В этом случае различие подвижностей 
винтовых и невинтовых сегментов уменьшается. 
Механическое поведение ОЦК-металлов тогда 
становится похожим на поведение кристаллов с 
ГЦК-решеткой [8]. 

Считается, что эволюция структуры ГЦК-ме-
таллов зависит от ЭДУ, в отличие от ОЦК, в 
которых эта зависимость очень слабая [9]. На-
против, согласно Трефилову [1], эволюция дис-
локационной структуры ОЦК-металлов согласу-
ется с ЭДУ: ЭДУ у металлов V группы (V, Nb, Ta) 
ниже, чем у соседних элементов из VI группы 
(Cr, Mo, W), и при этом у первых в ходе дефор-
мации отмечаются трудности в образовании 
ячеистой структуры с узкими границами. 

В то же время в ряде исследований было по-
казано, что ниобий и ванадий характеризуются 
низкими значениями Tc и напряжения Пайерлса, 
что приводит к относительно высокой подвиж-
ности дислокаций и делает деформационное по-
ведение этих ОЦК-металлов схожим с поведени-
ем ГЦК-металлов [10-14]. Эволюция структуры 
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ниобия при большой пластической деформации 
сдвигом под давлением (СПД) при комнатной 
температуре исследована во многих работах [15-
18]. Как и в других металлах с достаточно высо-
кой ЭДУ (Fe [19, 20], Mo [21], Ni [22]), при дефор-
мации Nb происходит сначала формирование 
ячеистой структуры, в которой в ходе большой 
пластической деформации развиваются рота-
ционных моды и происходит переход к коллек-
тивным дисклинационным эффектам [23]. В ре-
зультате СПД формируется разориентированная 
субмикрокристаллическая (СМК) структура. 
Наблюдаемое в Nb замедление упрочнения свя-
зывают с развитием динамического возврата [18] 
или миграцией границ зерен под действием вну-
тренних напряжений, вызванных деформацией 
[16, 17]. Также следует отметить, что в ниобии в 
ходе деформации при комнатной температуре 
не происходят ни фазовые превращения, вы-
званные давлением, ни двойникование. В вана-
дии более низкая ЭДУ (100 и 200 мДж/м2 для V и 
Nb соответственно [24]) повышает вероятность 
двойникования, в частности, при повышении 
содержания примесей [25]. 

Эволюция структуры V при деформации, 
приводящей к формированию СМК-состоя-
ния, исследована пока недостаточно подробно 
[26-28]. Цель настоящей работы - изучение за-
кономерностей изменения структуры ванадия, 
деформированного СПД при комнатной темпе-
ратуре, и его упрочнения в зависимости от вели-
чины деформации. 

МАТЕРИАЛ И МЕТОДИКА 
ЭКСПЕРИМЕНТА

Исследовали ванадий чистотой 99.98 мас.%. 
Образцы были вырезаны из прокатанного листа, 
отожженного в вакууме при температуре 1100°С, 
1 ч. Размер преимущественно равноосных зерен 
составлял несколько миллиметров (рис. 1а). В 
плоскости образца какой-либо четкой текстуры 
не зафиксировано, структура каждого образца 
до деформации была образована несколькими 
крупными зернами различной ориентировки 
(рис. 1).

Деформацию проводили методом сдвига под 
давлением в наковальнях Бриджмена без боко-
вой поддержки [29, 30]. Давление при деформа-
ции составило 6 ГПа. Угол поворота наковаль-
ни (φ) варьировали от 0° (осадка без сдвига) до 
3600° (10 оборотов наковальни). Образцы до де-
формации имели форму диска диаметром 5 мм 
и толщиной 0.3 мм. Истинную деформацию (е) 
рассчитывали с учетом толщины образца до и 
после деформации, угла поворота наковальни и 
расстояния до центра образца [21]. Исследован-
ный интервал истинной деформации составил 

0.4-10.7. Погрешность определения истинной 
деформации не превышала Δе = 0.2.

Измерение твердости методом Виккерса про-
водили по двум взаимно перпендикулярным ди-
аметрам на каждом образце с шагом 0.25 мм при 
нагрузке 0.5Н на твердомере “Qness GmbH”, Ав-
стрия. Полученные на различных образцах ре-
зультаты усредняли по интервалам истинной 
деформации 0.4. Погрешность измерения твер-
дости составляла 7%.

Структуру деформированного ванадия иссле-
довали с помощью просвечивающего электрон-
ного микроскопа (ПЭМ) JEM 200CX, Япония, 
при ускоряющем напряжении 160 кВ. Иссле-
дования проводили на расстоянии 1.5±0.2 мм 
от центра образца. Фольги для ПЭМ получали 
механическим утонением и последующей элек-
тролитической полировкой. Образцы, дефор-
мированные СПД с углом поворота наковаль-
ни не более 15°, дополнительно исследовали на 
сканирующем электронном микроскопе (СЭМ) 
QUANTA 200 Pegasus, Нидерланды, с пристав-
кой для анализа картин дифракции обратно рас-
сеянных электронов (EBSD). EBSD-анализ про-
водили при ускоряющем напряжении 20 кВ, шаг 
сканирования составил 0.2-4.0 мкм. При анали-
зе из рассмотрения исключали точки с индексом 
конфиденциальности (CI) ниже 0.1 и зерна, со-
держащие 4 и менее пикселей. 

Средний размер элементов структуры опре-
деляли по результатам СЭМ-исследований ме-
тодом секущих и ПЭМ-исследований методом 
обратных диаметров с погрешностью 5%.

РЕЗУЛЬТАТЫ
Эволюция структуры ванадия при СПД при-

ведена на рис. 2-7. Деформация осадкой привела 

(a) (б)

500 мкм

[001] 111

001 101

111

001 101

Рис. 1. Исходная структура исследованного ванадия: а – 
ориентационная карта в цветах обратной полюсной фигу-
ры (ОПФ); б – ОПФ. Данные EBSD-анализа.



ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ      том 126       № 1       2025

	 ЭВОЛЮЦИЯ СТРУКТУРЫ И УПРОЧНЕНИЕ ВАНАДИЯ ПРИ ДЕФОРМАЦИИ СДВИГОМ	 89

к формированию дислокационной ячеистой 
структуры (рис. 2а) и полос деформации (не-
скомпенсированных мезополос [31]), которые 
наблюдаются на разных масштабных уровнях 
(рис. 2б, 3а, б). Разориентировка на границах 
полос происходит скачком, его величина со-
ставляет от 15° до 55° (линия сканирования 1, 
рис. 3б). В ячеистой структуре разориентировка 
меняется плавно, но даже на значительном рас-
стоянии (сотни микрон) в пределах одного ис-
ходного зерна накопленная разориентировка не 
превышает 13° (линия сканирования 2, рис. 3в).

Анализ картин микродифракции (рис. 2в) по-
казывает, что полосы деформации не находятся 
в двойниковой ориентировке по отношению к 
матрице. На гистограммах распределения эле-
ментов структуры по углам разориентировки 
(рис. 4а, б) видно, что после СПД с е<1 (осадка 
и φ = 5°) доля малоугловых границ (МУГ) пре-
вышает 20%, а в области большеугловых границ 
(БУГ) не наблюдается четких пиков, соответ-
ствующих двойниковым разориентировкам (60° 
[25, 32]). Таким образом, в ванадии на начальных 
этапах деформации наряду с дислокационным 

(a) (б) (в)

1 мкм 1 мкм

Рис. 2. ПЭМ-изображение микроструктуры ванадия, деформированного осадкой (е = 0.4): а – светлопольное; б – темно-
польное в рефлексе (211); в – микродифракция и схема расшифровки, оси зон [135] и [132].
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Рис. 3. Микроструктура ванадия, деформированного осадкой (е = 0.4): а – ориентационная карта в цветах ОПФ с нане-
сенной схемой БУГ; б, в – изменение ориентировки вдоль линий сканирования 1 и 2 соответственно, A - разориентировка 
относительно исходной точки; B - разориентировка соседних точек. СЭМ.
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скольжением наблюдается локализация дефор-
мации. При этом двойникования, как возмож-
ного механизма деформации, не обнаружено.

Деформационные полосы присутствуют в струк-
туре и после большей деформации (рис. 5а, б). В 
ходе СПД с е = 1.4 (φ = 15°) происходит фрагмен-
тация полос, но не наблюдается образования но-
вых полос, в которых фрагментация отсутствует. 
После этой деформации резко возрастает доля 
БУГ и соответственно изменяется форма распре-
деления границ по углам разориентировки (рис. 
4). Доля МУГ после СПД с е = 1.4 резко падает 
до 5%, а в области больших углов форма распре-
деления практически соответствует таковой для 
ансамбля случайно ориентированных зерен [33] 
(рис. 4в). 

Из экспериментальных EBSD-данных по 
картам распределения кернер-разориентации – 
между выбранной точкой (пикселем) и всеми 
соседними пикселями во второй координаци-
онной сфере (рис. 6) была рассчитана плотность 
геометрически необходимых дислокаций. Для 
расчета использовали выражение [34]: 
	 ρGND =(aθKAM)/(bx),	 (1)

где a – постоянная (для ОЦК a = 2), b – вектор 
Бюргерса, x – шаг сканирования, θКАМ – средняя 
кернер-разориентация, определенная как сред-
ний угол разориентировки. Расчеты показали, 
что на начальном этапе деформации плотность 
дислокаций увеличилась на порядок: значение 
ρGND изменялось от 0.3 1014 1/м2 после е = 0.4 до  
7 1014 1/м2 после е = 1.4.

Первые элементы структуры субмикронного 
размера, имеющие БУГ деформационного про-
исхождения, микрокристаллиты, были зафикси-
рованы в структуре ванадия после деформации 
е = 2.5 (указаны стрелками на рис. 5в). Продол-
жение деформации приводит к увеличению ко-
личества микрокристаллитов и снижению до-
ли дислокационных ячеек. После деформации 
е = 7.8 дислокационные ячейки с малоугловыми 
границами уже не наблюдаются, т. е. происходит 
образование СМК-структуры (рис. 7а). Однако 
вплоть до е = 9.8 в пределах деформационных 
полос микрокристаллиты сохраняют близкие 
ориентировки (рис. 7б). Это свидетельствует о 
том, что образование полосовых структур на на-
чальных этапах деформации оказывает заметное 
влияние на формирование СМК-структуры: в 
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Рис. 4. Гистограммы распределения элементов структуры по углам разориентировки: а – е = 0.4 (осадка); б - е = 0.7 (φ = 5°); 
в – е = 1.4 (φ = 15°). По данным EBSD-анализа.
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Рис. 5. Микроструктура ванадия, деформированного с е = 1.4 (φ = 15°, а, б) и е = 2.5 (φ = 45°, в); а – ПЭМ светлопольное 
изображение; б, в – темнопольные изображения в рефлексах типа (110) ОЦК и микродифракции на вставках, на рис. 5в 
стрелками указаны микрокристаллиты.
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пределах исходной полосы затруднены разворо-
ты соседних микрокристаллитов.

По результатам СЭМ- и ПЭМ-исследования 
были построены гистограммы распределения 
элементов структуры по размерам (рис. 8), опре-
делены средние размеры (dср) и построена зави-
симость dср от истинной деформации (рис. 9а). 

На рис. 8б видно, что в результате деформа-
ции с е = 1.4 (15°) элементы структуры (более 
90%) измельчаются до субмикронных размеров 
и исчезают отдельные крупные элементы, кото-
рые образуют “хвост” распределения, наблю-
дающийся после деформации с е<1 (рис. 8а). 
На рис. 9а зависимость также показывает, что 
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Рис. 6. Карты распределения кернер-разориентации, полученные в результате EBSD-анализа: а – е = 0.4 (осадка); б - е = 0.7 
(φ = 5°); в - е = 1.4 (φ = 15°).
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Рис. 7. СМК-структура ванадия и микродифракции (на вставках): а – е = 7.8 (3 об.); б – е = 9.8 (10 об.); ПЭМ темнополь-
ные изображения в рефлексе типа (110).
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в ванадии быстро происходит сильное измель-
чение структуры: средний размер элементов 
структуры составляет 170 нм после деформа-
ции е = 4. Затем, когда в структуре формируется 
значительное количество микрокристаллитов 

(деформация е>5), их размер стабилизируется 
на уровне 140-150 нм. В этом случае гистограм-
мы распределения по размерам практически не 
изменяются с ростом истинной деформации 
(рис. 8в, г).
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Рис. 8. Гистограммы распределения элементов структуры по размерам для ванадия, деформированного СПД: а – е = 0.4; 
б – е = 1.4; в – е = 5.1; г – е = 8.3.
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На рис. 9а показана зависимость твердости 
ванадия от истинной деформации. Видно, что 
осадка под давлением 6 ГПа (е = 0.4) приводит 
к почти 2-кратному упрочнению ванадия. При 
увеличении истинной деформации до е = 7.0 
твердость непрерывно растет, а далее в интер-
вале 7.0-9.3 она практически не меняется. При 
деформации более 9.3 наблюдается дальней-
ший рост твердости. Максимально достигну-
тое значение твердости составляет 3.4 ГПа, что 
превышает значения 2.4-2.5 ГПа, полученные в 
работах [26–28] при деформации СПД на 10 обо-
ротов наковальни ванадия чистотой 98.8, 99.9 и 
99.8 мас.% соответственно. Авторы этих работ 
наблюдали выход деформации на установившу-
юся стадию, а в работе [28] констатировали раз-
витие динамического возврата при увеличении 
угла поворота наковальни более 5 оборотов.

В работах [26-28] наименьший достигнутый 
размер зерна составлял 500-330 нм. Вероятно, 
формирование более дисперсной структуры в 
настоящей работе позволило получить более 
высокие значения твердости по сравнению с 
приведенными в литературе. Следует отметить, 
что в данных работах минимальная деформация 
составляла ¼ оборота, что, видимо, не позво-
лило авторам наблюдать образования полосо-
вых структур. Согласно нашему исследованию, 
после деформации с углом поворота наковаль-
ни 45° (1/8 об.) и более явные полосы дефор-
мации уже не наблюдаются (рис. 5в, рис. 7), об 
их былом присутствии свидетельствуют близкие 
ориентировки микрокристаллитов в пределах 
бывшей полосы. О возможной эволюции через 
образование полосовых структур может свиде-
тельствовать тот факт, что в работе [26] даже по-
сле деформации на 10 оборотов наковальни на-
блюдали вытянутые зерна.

ОБСУЖДЕНИЕ
Как было отмечено во Введении, ванадий и 

ниобий отличаются низкими значениями кри-
тической температуры и напряжения Пайерлса, 
что определяет высокую подвижность дисло-
каций при сравнительно низких температурах. 
Однако эволюция структуры в ходе деформации 
СПД в этих материалах различна. В ванадии на-
ряду с формированием ячеистой структуры про-
исходит образование деформационных полос, 
которые не наблюдались в ниобии [18]. Кроме то-
го, в ниобии деформация на стадии СМК-струк-
туры практически не приводит к дальнейше-
му повышению твердости, тогда как в ванадии 
с СМК-структурой происходит рост твердости 

при деформации е>9.3 (рис. 9а). Таким образом, 
можно предположить, что в V влияние динами-
ческого возврата меньше, чем в ниобии. Следу-
ет отметить, что график зависимости твердости 
от истинной деформации для ванадия подобен 
таковому для железа [20]: начальная стадия де-
формации с быстрым упрочнением сменяется 
интервалом, в котором упрочнение практиче-
ски отсутствует, а затем происходит дальнейший 
рост твердости (рис. 9а). Однако в железе в ходе 
деформации СПД при комнатной температуре 
полосы деформации не образуются. Возможно, 
прекращение деформационного упрочнения 
при большой деформации ниобия вследствие 
развития динамического возврата, связано с бо-
лее высоким, чем у железа и ванадия значением 
ЭДУ. 

Образование полос деформации в ванадии 
может быть связано с особенностями взаимо-
действия “вакансия-дислокация”. В работе [35] 
разработана модель деформации ОЦК-металлов, 
согласно которой существует температура де-
формации T0, ниже которой затруднено взаимо-
действие дислокации с вакансией. Согласно мо-
дели, для Fe –Т0=229-245 К, а для V – Т0=396 К. 
Кроме того, рассчитанная в работе [35] энергия 
миграции вакансий в V значительно выше, чем 
в Fe (125.4 и 73.3 кДж/моль соответственно). Та-
ким образом, в ходе деформации при комнат-
ной температуре (300 К) в ванадии должно быть 
затруднено переползание дислокаций, так как, 
во-первых, температура деформации ниже Т0 и, 
во-вторых, высокое значение имеет энергия ми-
грации вакансий. Это приводит на начальных 
этапах деформации (е<1) к затруднению обра-
зования ячеистой структуры и создает условия 
для локализации деформации, проявляющейся 
в образовании полосовых структур. Такие малые 
деформации при сдвиге под давлением реализу-
ются только при малых углах порота наковальни 
и соответствуют началу зависимости “Н-е” на 
рис. 9а, где присутствует малое количество зна-
чений. Таким образом, проведенный в настоя-
щей работе эксперимент не позволяет подробно 
изучить эволюцию полосовых структур, можно 
только утверждать, что в ходе деформации про-
исходит их фрагментация. Однако такая лока-
лизация деформации существенно повлияла на 
последующую эволюцию структуры, поскольку 
в пределах полосы развороты элементов струк-
туры оказались затруднены. В результате фор-
мирование СМК-структуры произошло в ва-
надии при значительно большей деформации, 
чем в железе (7.8 и 5.3 [36]). Следует отметить, 
что образование первых микрокристаллитов в V 
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и Fe происходит при близких значениях истин-
ной деформации (2.5 и 3.0 [36] соответственно). 
Увеличение истинной деформации, необходи-
мой для перехода на стадию СМК-структуры, 
обусловленное наличием полосовых структур 
различных типов, было ранее отмечено и в дру-
гих материалах, например в конструкционной 
стали со структурой реечного мартенсита [37], в 
аустенитной нержавеющей стали, Ti и Zr, склон-
ных к барическим превращениям [38-40], а так-
же при криогенной деформации железа и нике-
ля, на начальных этапах которой происходило 
деформационное двойникование [41, 42]. 

В работе [9] показано, что основной вклад в 
упрочнение чистых металлов в ходе СПД вносят 
главным образом границы зерен и дислокации. 
Зернограничное упрочнение определяется урав-
нением Холла-Петча [9]:
	 Δσ GB = k d –1/2,	 (2) 
где d - размер зерна (или субзерна, но в этом 
случае показатель степени изменится до –1), 
k – константа для данного материала. Для оцен-
ки механических свойств нано- и субмикрокри-
сталлических материалов обычно используют 
значения твердости в качестве напряжения тече-
ния [43-45]. Для установления параметров урав-
нения “Н – d-n” была построена зависимость 
ln(H-H0) от lnd (рис. 9б). За H0 приняли значение 
1 ГПа, соответствующее микротвердости неде-
формированного крупнозернистого V, струк-
тура которого приведена на рис. 1. На рис. 9б 
видно, что после деформации с е > 1 экспери-
ментальные значения аппроксимируются пря-
мой линией. Расчет приводит к уравнению типа 
Холла-Петча, в котором k = 0.7 (ГПа мкм1/2), а 
n = 0.51, что близко к значению 1/2, характерно-
му для зеренной структуры. Значения твердости 
ванадия, деформированного с е<1, не ложатся 
на полученную зависимость (рис. 9б), т. е. твер-
дость ванадия возрастает значительно быстрее, 
чем это можно ожидать согласно уравнению (2). 
В настоящей работе экспериментально установ-
лено, что при истинной деформации с е<2 в ва-
надии происходит резкий рост плотности дисло-
каций. 

Вклад дислокаций в упрочнение может быть 
оценен согласно выражению [9]: 
	 Δτ=α Gb √ρ,	 (3)
где α - эмпирическая константа, равная 0.3; 
G – модуль сдвига, 53.2 ГПа; b – вектор Бюр-
герса, 0.262 нм для V [46]; ρ – плотность дисло-
каций, м-2. Общая плотность дислокаций пред-
ставляет собой сумму плотности статистически 

сохраненных дислокаций (ρS) и плотности ге-
ометрически необходимых дислокаций (ρGND) 
[47]. Как показано в работах [48, 49], при СПД 
плотность геометрически необходимых дис-
локаций может превышать плотность стати-
стически сохраненных в 3 раза. В этом случае 
упрочнение материала будет контролироваться 
геометрически необходимыми дислокациями. 
Подставив в выражение (3) полученные по вы-
ражению (1) данные ρGND, можно оценить, как 
меняется вклад дислокационного упрочнения на 
начальном этапе деформации до е = 2 (рис. 9в). 
Анализ рис. 9 позволяет заключить, что основ-
ной вклад в упрочнение ванадия при СПД на на-
чальной стадии (е<1) вносят дислокации, а при 
дальнейшей деформации – большеугловые гра-
ницы, доля которых после е = 1.4 уже превышает 
90% (рис. 4). Доминирующая роль зерногранич-
ного упрочнения отмечалась и ранее. Например, 
в работе [50] было показано возрастание вклада 
зернограничного упрочнения при измельчении 
элементов СМК-структуры железа.

ЗАКЛЮЧЕНИЕ
В ванадии, деформированном сдвигом под 

давлением, на начальном этапе (при е<1) наря-
ду с формированием дислокационной ячеистой 
структуры происходит локализация деформа-
ции, которая приводит к образованию полосо-
вых структур – полос деформации. 

Начальный этап (е<1) характеризуется интен-
сивным деформационным упрочнением. В этом 
случае твердость растет значительно быстрее, 
чем можно ожидать согласно уравнению типа 
Холла-Петча. При большей деформации упроч-
нение подчиняется уравнению Холла–Петча с 
показателем степени близким к –1/2, характер-
ным для зеренной структуры. Таким образом, 
основной вклад в упрочнение ванадия при СПД 
на начальном этапе вносят дислокации, а при 
дальнейшей деформации – большеугловые гра-
ницы.

Сравнение эволюции структуры ванадия и 
железа при деформации методом СПД позво-
лило выявить влияние локализации деформа-
ции при формировании полосовых структур на 
достижение в ванадии СМК-состояния. Лока-
лизация деформации не влияет на образование 
первых микрокристаллитов, но способствует 
переходу к СМК-структуре при более высоком 
значении истинной деформации, т. е. удлиняет 
стадию существования структуры смешанного 
типа. 
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STRUCTURAL EVOLUTION AND HARDENING OF VANADIUM UPON 
SHEAR UNDER PRESSURE

T. M. Gapontseva1,  T. I. Chashchukhina1,  L. M. Voronova1, *,  M. V. Degtyarev1,  
V. P. Pilyugin1,  and  K. Yu. Karamyshev1

1Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108 Russia
*e-mail: highpress@imp.uran.ru

The structural evolution and hardness of vanadium under high pressure torsion at room temperature is in-
vestigated. Strain localization has been observed at true strains less than 1 (e < 1), leading to the formation 
of a banded structure. The study shows that strain localization delays the transition to the SMC structure 
during subsequent deformation. The mechanisms underlying the formation of deformation bands in vana-
dium are discussed. Dislocations are found to play a dominant role in the hardening of vanadium during 
the initial deformation stages (e < 1), while high-angle grain boundaries of deformation origin emerged as 
the main contributors at higher strains. In addition, the parameters of the Hall–Petch-type equation are 
determined.

Keywords: vanadium, deformation, high pressure torsion, hardness, structure, deformation bands, Hall–Petch 
equation
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