RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

MODELING THE DEPENDENCE OF THE NÉEL TEMPERATURE OF CrCFBr MXene ON STRAIN

PII
S3034621525080045-1
DOI
10.7868/S3034621525080045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 8
Pages
873-878
Abstract
The effect of lattice strain on the exchange interaction constants of CrCFBr MXene was studied using first-principles calculations. Knowledge of the exchange constants made it possible to simulate the dependence of the Néel temperature T on the lattice strain ε of the MXene using the mean-field method. It was found that with increasing tensile strain, T changes non-monotonically, reaching a maximum value at ε = 0.1. Compressive strain up to ε = –0.11 monotonically decreases the Néel temperature, but beyond ε < –0.11, it leads to a rapid increase in T. It is shown that in the CrCFBr system, at a strain of ε = –0.11, an “order–order” phase transition occurs, where the Néel-type antiferromagnetic state transforms into a stripe-type antiferromagnetic state.
Keywords
максены обменное взаимодействие деформация решетки метод среднего спина метод функционала плотности
Date of publication
22.02.2026
Year of publication
2026
Number of purchasers
0
Views
46

References

  1. 1. Geim A.K., Novoselov K.S. The rise of graphene // Nature mater. 2007. V. 6. No. 3. P. 183–191.
  2. 2. Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersam M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing // Chem. Soc. Rev. 2013. V. 42. No. 7. P. 2824–2860.
  3. 3. Sun M., Luo Y., Yan Y., Schwingenschlogl U. Ultrahigh carrier mobility in the two-dimensional semiconductors B8Si4, B8Ge4, and B8Sn4 // Chem. of Mater. 2021. V. 33. No. 16. P. 6475–6483.
  4. 4. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D.E., Zhang Y., Dubonos S.V., Firsov A.A. Electric field effect in atomically thin carbon films // Science. 2004. V. 306. No. 5696. P. 666–669.
  5. 5. Palummo M., Bernardi M., Grossman J.C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides // Nano Letters. 2015. V. 15. No. 5. P. 2794–2800.
  6. 6. Sun M., Schwingenschlögl U. δ-CS: A direct-band-gap semiconductor combining auxeticity, ferroelasticity, and potential for high-efficiency solar cells // Phys. Rev. Appl. 2020. V. 14. No. 4. P. 044015.
  7. 7. Akinwande D., Brennan C.J., Bunch J.S., Egberts P., Felts J.R., Gao H., Huang R., Kim J.-S., Li T., Li Y., Liechti K.M., Lu N., Park H.S., Reed E.J., Wang P., Yakobson B.I., Zhang T., Zhang Y.-W., Zhou Y., Zhu Y. A review on mechanics and mechanical properties of 2D materials — Graphene and beyond // Extreme Mechanics Letters. 2017. V. 13. P. 42–77.
  8. 8. Schaibley J.R., Yu H., Clark G., Rivera P., Ross J.S., Seyler K.L., Yao W., Xu X. Valleytronics in 2D materials // Nature Rev. Mater. 2016. V. 1. No. 11. P. 1–15.
  9. 9. Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf T., Ju L., Zhang X. A graphene-based broadband optical modulator // Nature. 2011. V. 474. No. 7349. P. 64–67.
  10. 10. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnár V.S., Roukes M.L., Treger D.M. Spintronics: a spin-based electronics vision for the future // Science. 2001. V. 294. No. 5546. P. 1488–1495.
  11. 11. Adachi H. Back to basics // Nature Physics. 2015. V. 11. P. 707–708.
  12. 12. Chang C.-Z., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., Wang L.-L., Ji Z.-Q., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., Zhang S.-C., He K., Wang Y., Lu L., Ma X.-C., Xue Q.-K. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator // Science. 2013. V. 340. No. 6129. P. 167–170.
  13. 13. Huang B., Clark G., Navarro-Moratalla E., Klein D.R., Cheng R., Seyler K.L., Zhong D., Schmidgall E., McGuire M.A., Cobden D.H., Yao W., Xiao D., Jarillo-Herrero P., Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit // Nature. 2017. V. 546. No. 7657. P. 270–273.
  14. 14. Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z.Q., Cava R.J., Louie S.G., Xia J., Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals // Nature. 2017. V. 546. No. 7657. P. 265–269.
  15. 15. Burch K.S., Mandrus D., Park J.G. Magnetism in two-dimensional van der Waals materials // Nature. 2018. V. 563. No. 7729. P. 47–52.
  16. 16. O’Hara D.J., Zhu T., Trout A.H., Ahmed A.S., Luo Y.K., Lee C.H., Brenner M.R., Rajan S., Gupta J.A., McComb D.W., Kawakami R.K. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit // Nano Letters. 2018. V. 18. No. 5. P. 3125–3131.
  17. 17. Hantanasirisakul K., Anasori B., Nemsak S., Hart J.L., Wu J., Yang Y., Chopdekar R.V., Shafer P., May A.F., Moon E.J., Zhou J., Zhang Q., Taheri M.L., May S.J., Gogotsi Y. Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene // Nanoscale Horizons. 2020. V. 5. No. 12. P. 1557–1565.
  18. 18. Kumar H., Frey N.C., Dong L., Anasori B., Gogotsi Y., Shenoy V.B. Tunable magnetism and transport properties in nitride MXenes // ACS Nano. 2017. V. 11. No. 8. P. 7648–7655.
  19. 19. Wang G. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene // J. Phys. Chem. C. 2016. V. 120. No. 33. P. 18850–18857.
  20. 20. He J., Lyu P., Nachtigall P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity // Journal of Materials Chemistry C. 2016. V. 4. No. 47. P. 11143–11149.
  21. 21. Si C., Zhou J., Sun Z. Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals // ACS Appl. Mater. Interfaces. 2015. V. 7. No. 31. P. 17510–17515.
  22. 22. He J., Lyu P., Sun L.Z., García Á.M., Nachtigall P. High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes // J. Mater. Chem. C. 2016. V. 4. No. 27. P. 6500–6509.
  23. 23. Jungwirth T., Marti X., Wadley P., Wunderlich J. Antiferromagnetic spintronics // Nature Nanotechnology. 2016. V. 11. No. 3. P. 231–241.
  24. 24. Jungwirth T., Sinova J., Manchon A., Marti X., Wunderlich J., Felser C. The multiple directions of antiferromagnetic spintronics // Nature Phys. 2018. V. 14. No. 3. P. 200–203.
  25. 25. Zheng F., Xiao X., Xie J., Zhou L., Li Y., Dong H. Structures, properties and applications of two-dimensional metal nitrides: from nitride MXene to other metal nitrides // 2D Materials. 2022. V. 9. No. 2. P. 022001.
  26. 26. Sun Q., Li J., Li Y., Yang Z., Wu R. Cr2NX2 MXene (X=O, F, OH): a 2D ferromagnetic half-metal // Appl. Phys. Letters. 2021. V. 119. No. 6.
  27. 27. Xiao R., Guan Z., Feng D., Song C. Strain-tunable ferromagnetism and skyrmions in two-dimensional Janus Cr2XYTe6 (X, Y=Si, Ge, Sn, and X≠Y) monolayers // J. Appl. Phys. 2024. V. 135. No. 4.
  28. 28. Kalmár J., Karlický F. Strain-induced changes of electronic and optical properties of Zr-based MXenes // J. Appl. Phys. 2024. V. 135. No. 24.
  29. 29. Sun Q., Fu Z., Li Y., Yang Z. Manipulation of electronic and magnetic properties of Cr2CX2 (X=F, O, OH) monolayer by applying mechanical strains // J. Alloys Compounds. 2021. V. 850. P. 156769.
  30. 30. Luo D., Xue W., Yang X., Ni Y., Yuan Z., Liu Y., Song Y. Lattice strain effects on the finite-temperature magnetism of two-dimensional single-layer CrI3 // Phys. Rev. B. 2023. V. 108. No. 9. P. 094432.
  31. 31. Šiškins M., Kurdi S., Lee M., Slotboom B.J.M., Xing W., Mañas-Valero S., Coronado E., Jia S., Han W., van der Sar T., van der Zant H.S.J., Steeneken P.G. Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures // npj 2D Mater. Appl. 2022. V. 6. No. 1. P. 41.
  32. 32. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. No. 16. P. 11169.
  33. 33. Dudarev S.L., Manh D.N., Sutton A.P. Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide // Philosoph. Magazine B. 1997. V. 75. No. 5. P. 613–628.
  34. 34. Si C., Zhou J., Sun Z. Half-metallic ferromagnetism and surface functionalization-induced metal – insulator transition in graphene-like two-dimensional Cr2C crystals // ACS Appl. Mater. Interfaces. 2015. V. 7. No. 31. P. 17510–17515.
  35. 35. Yang Y., Ren W., Stengel M., Yan X.H., Bellaiche L. Revisiting Properties of Ferroelectric and Multiferroic Thin Films under Tensile Strain from First Principles // Phys. Rev. Letters. 2012. V. 109. No. 5. P. 057602.
  36. 36. Afremov L.L., Kirienko Y.V., Petrov A.A., Chepak A.K. Size effect's influence on the magnetic phase transitions in the nanosized magnets // J. Supercond. Novel Magnetism. 2023. V. 36. No. 2. P. 587–600.
  37. 37. Афремов Л.Л., Белоконь В.И., Дьяченко О.И., Петров А.А. Метод случайного поля в магнетизме наночастиц. Владивосток: Дальневосточный федеральный университет, 2016. 110 с.
  38. 38. Luo K., Zha X.-H., Huang Q., Lin C.-T., Yang M., Zhou S., and Du S. First-principles study of magnetism in some novel MXene materials // RSC Adv. 2020. V. 10. P. 44430–44436.
  39. 39. Sun Q., Fu Z., and Yang Z. Tunable magnetic and electronicTunable magnetic and electronic properties of the Cr-based MXene (Cr2C) with functional groups and doping // J. Magn. Magn. Mater. 2020. V. 514. 167141.
  40. 40. Webster L., Yan J.A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3 // Phys. Rev. B. 2018. V. 98. No. 14. P. 144411.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library