RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

ON THE SCENARIO DIVERSITY OF MAGNETIC REENTRANCY FORMATION IN THE ISING MODEL ON A DECORATED SQUARE LATTICE

PII
S3034621525090045-1
DOI
10.7868/S3034621525090045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 9
Pages
991-1000
Abstract
In this work, based on the exact solution of the Ising model on a decorated square lattice with an arbitrary number of decorating spins, the fundamental possibility of describing the phenomenon of magnetic reentrancy is revealed. It is established that magnetic reentrancy arises in the case of competition between exchange interactions in the considered spin systems. It has been found that in the system under study, only one, three, or five magnetic phase transitions are possible, which is confirmed by a complex magnetic phase diagram. A number of key scenarios for the formation of magnetic reentrancy are presented, illustrating the influence of model parameters on the magnetic behaviour of the system.
Keywords
модель Изинга декорированная квадратная решетка точное аналитическое решение магнитная реентерабельность
Date of publication
26.10.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Senoussi S. Reentrant magnetism: New aspects // Phys. Rev. B. 1985. V. 31. No. 9. P. 6086—6088.
  2. 2. Spin glasses: An experimental introduction / Ed. J.A. Mydosh. London: CRC Press, 1993. xi, 280 p.
  3. 3. Frustrated spin systems / Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. xxx, 719 p.
  4. 4. Binder K., Young A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions // Rev. Mod. Phys. 1986. V. 58. No. 4. P. 801—976.
  5. 5. Makarov D.V., Zakhlevnykh A.N. Reentrant phase transitions in ferronematic liquid crystals // Mol. Cryst. Liq. Cryst. 2012. V. 553. No. 1. P. 199—210.
  6. 6. Kakehashi Y. Magnetism in amorphous transition metals // Phys. Rev. B. 1991. V. 43. No. 13. P. 10820—10831.
  7. 7. Kakehashi Y. Magnetism in amorphous transition metals. II // Phys. Rev. B. 1993. V. 47. No. 6. P. 3185—3195.
  8. 8. Calderon M.J., Das Sarma S. Reentrant ferromagnetism in a class of diluted magnetic semiconductors // Phys. Rev. B. 2007. V. 75. No. 23. P. 235203.
  9. 9. Sanyal P. Theory of the magnetism in La2NiMnO6 // Phys. Rev. B. 2017. V. 96. No. 21. P. 214407.
  10. 10. Naveen K., Reehuis M., Adler P., Pattison Ph., Hoser A., Mandal T.K., Arjun U., Mukharjee P.K., Nath R., Felser C., Paul A.K. Reentrant magnetism at the borderline between long-range antiferromagnetic order and spin-glass behavior in the B-site disordered perovskite system Ca2−xSrxFeRuO6 // Phys. Rev. B. 2018. V. 98. No. 22. P. 224423.
  11. 11. Scheie A., Kindervater J., Saubert S., Duvinage C., Pfleiderer C., Changlani H.J., Zhang S., Harriger L., Arpino K., Koohpayeh S.M., Tchernyshyov O., Broholm C. Reentrant phase diagram of Yb2Ti2O7 in a 111_ magnetic field // Phys. Rev. Lett. 2017. V. 119. No. 12. P. 127201.
  12. 12. Yahne D.R., Pereira D., Jaubert L.D.C., Sanjeewa L.D., Powell M., Kolis J.W., Xu G., Enjalran M., Gingras M.J.P., Ross K.A. Understanding reentrance in frustrated magnets: The case of the Er2Sn2O7 pyrochlore // Phys. Rev. Lett. 2021. V. 127. No. 27. P. 277206.
  13. 13. Samanta T., Bhobe P.A., Das A., Kumar A., Nigam A.K. Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy // Phys. Rev. B. 2018. V. 97. No. 18. P. 184421.
  14. 14. Buzdin A.I. Proximity effects in superconductorferromagnet heterostructures // Rev. Mod. Phys. 2005. V. 77. No. 3. P. 935—976.
  15. 15. Tran L.M., Zaleski A.J., Bukowski Z. Reentrant resistivity due to the interplay of superconductivity and magnetism in Eu0.73Ca0.27(Fe0.87Co0.13)2As2 // Phys. Rev. B. 2024. V. 109. No. 1. P. 014509.
  16. 16. Chakraborty S., Gupta Sh., Pakhira S., Choudhary R., Biswas A., Mudryk Y., Pecharsky V.K., Johnson D.D., Mazumdar Ch. Ground-state degeneracy and complex magnetism of geometrically frustrated Gd2Ir0.97Si2.97 // Phys. Rev. B. 2022. V. 106. No. 22. P. 224427.
  17. 17. Kitatani H., Miyashita S., Suzuki M. Reentrant phase transitions in the two-dimensional Ising model with competing nearest neighbour interactions // Phys. Lett. A. 1985. V. 108. No. 1. P. 45—49.
  18. 18. Azaria P., Diep H.T., Giacomini H. Coexistence of order and disorder and reentrance in an exactly solvable model // Phys. Rev. Lett. 1987. V. 59. No. 15. P. 1629—1632.
  19. 19. Yokota T. Reentrant and successive phase transitions in the Ising model with competing interactions // Phys. Rev. B. 1989. V. 39. No. 1. P. 523—527.
  20. 20. Diep H.T., Debauche M., Giacomini H. Reentrance and disorder solutions in exactly solvable Ising models // J. Magn. Magn. Mater. 1992. V. 104—107. P. 184—186.
  21. 21. Thomas C.K., Katzgraber H.G. Simplest model to study reentrance in physical systems // Phys. Rev. E. 2011. V. 84. No. 4. P. 040101.
  22. 22. Diep H.T., Giacomini H. Frustration – Exactly solved frustrated models / Frustrated spin systems / Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. P. 1—62.
  23. 23. Lajko P., d’Auriac J.-Ch.A., Rieger H., Igloi F. Reentrant randomquantum Ising antiferromagnet // Phys. Rev. B. 2020. V. 101. No. 2. P. 024203.
  24. 24. Syozi I. A decorated Ising lattice with three transition temperatures // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1367—1368.
  25. 25. Miyazima S., Syozi I. A statistical model of Ising spin with five transition points // Prog. Theor. Phys. 1968. V. 40. No. 1. P. 185—187.
  26. 26. Miyazima S. Three phase transitions of Ising model // Prog. Theor. Phys. 1968. V. 40. No. 3. P. 462—470.
  27. 27. Nakano H. Ordering in certain statistical systems of Ising spins // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1121—1132.
  28. 28. Nakano H. Existence of three transition temperatures in decorated triangular and square Ising lattices with anisotropic couplings // Prog. Theor. Phys. 1968. V. 40. No. 2. P. 231—236.
  29. 29. Fradkin E.H., Eggarter T.P. Ising models with several phase transitions // Phys. Rev. A. 1976. V. 14. No. 1. P. 495—499.
  30. 30. Jascur M. Exact results for a decorated Ising model // Physica A. 1998. V. 252. No. 1. P. 217—224.
  31. 31. Boughrara M., Taifi E., Kerouad M. Phase transition and magnetic properties of a decorated Ising film // Ferroelectrics. 2008. V. 372. No. 1. P. 47—53.
  32. 32. Strecka J., Rojas O., de Souza S.M. Spin-phonon coupling induced frustration in the exactly solved spin-1/2 Ising model on a decorated planar lattice // Phys. Lett. A. 2012. V. 376. No. 3. P. 197—202.
  33. 33. Doria F.F., Pereira M.S.S., Lyra M.L. Band-filling driven crossover from ferro to antiferromagnetic order in Ising lattices decorated by quantum dimers // J. Magn. Magn. Mater. 2014. V. 368. P. 98—104.
  34. 34. Chen Sh., Wu Y., Lu J., Teng B. Reentrant phenomenon in the decorated Ising model // Phys. Scripta. 2023. V. 98. No. 12. P. 125941.
  35. 35. Kassan-Ogly F.A., Zarubin A.V. Frustration in the Ising model on a decorated square lattice // Phys. Rev. E. 2025. V. 111. No. 4. P. 044133.
  36. 36. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part I // Phys. Rev. 1941. V. 60. No. 3. P. 252—262.
  37. 37. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part II // Phys. Rev. 1941. V. 60. No. 3. P. 263—276.
  38. 38. Baxter R.J. Exactly solved models in statistical mechanics. London: Academic Press, 1982. xii, 486 p.
  39. 39. Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition // Phys. Rev. 1944. V. 65. No. 3—4. P. 117—149.
  40. 40. Kaufman B. Crystal statistics. II. Partition function evaluated by spinor analysis // Phys. Rev. 1949. V. 76. No. 8. P. 1232—1243.
  41. 41. Kaufman B., Onsager L. Crystal statistics. III. Shortrange order in a binary Ising lattice // Phys. Rev. 1949. V. 76. No. 8. P. 1244—1252.
  42. 42. Ising E. Beitrag zur theorie des ferromagnetismus // Z. Physik. 1925. V. 31. No. 1. P. 253—258.
  43. 43. Syozi I. Statistics of kagome lattice // Prog. Theor. Phys. 1951. V. 6. No. 3. P. 306—308.
  44. 44. Кассан-Оглы Ф.А., Прошкин А.И., Муртазаев А.К., Мутайламов В.А. Декорированная изинговская квадратная решетка в магнитном поле // ФТТ. 2020. Т. 62. No. 5. С. 683—688.
  45. 45. Montroll E.W., Potts R.B.,Ward J.C. Correlations and spontaneous magnetization of the two-dimensional Ising model // J. Math. Phys. 1963. V. 4. No. 2. P. 308—322.
  46. 46. Baxter R.J. Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model // J. Stat. Phys. 2011. V. 145. No. 3. P. 518—548.
  47. 47. Кассан-Оглы Ф.А., Зарубин А.В. Явление магнитной реентерабельности в модели Изинга на декорированной квадратной решетке //ФММ. (В печати).
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library