- PII
- S3034621525090055-1
- DOI
- 10.7868/S3034621525090055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 126 / Issue number 9
- Pages
- 1001-1012
- Abstract
- This paper discusses a new approach to modeling the magnetic behavior of a Heusler alloy. The magnetization distribution in a sample is obtained by solving an equation that determines the resulting direction of the magnetization vector. This equation follows from the Landau-Lifshitz-Gilbert equation, which describes the entire process history. The demagnetization field is defined through a scalar magnetic potential using magnetostatic equations. These equations are associated with variational equations, which in many cases allows us to reduce the requirements for the smoothness of the desired solution and is very convenient for the numerical implementation of the problem. An iterative algorithm for sequentially refining the magnetization and potential is proposed. Numerical modeling of the steady-state magnetization distribution within a two-dimensional sample is performed, as well as the demagnetization field both within the sample and in the surrounding space for various external magnetic field values.
- Keywords
- сплав Гейслера вытекающее из уравнения Ландау—Лифшица—Гильберта соотношение вариационная постановка метод конечных элементов
- Date of publication
- 26.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 56
References
- 1. Васильев А.Н., Бучельников В.Д., Такаги Т., Ховайло В.В., Эстрин Э.И. Ферромагнетики с памятью формы // Успехи физич. наук. 2003. Т. 173. № 6. С. 577–607. https://doi.org/10.3367/UFNr.0173.200306a.0577
- 2. Bachaga T., Zhang J., Khitouni M., Sunol J.J. NiMn-based Heusler magnetic shape memory alloys: A review // Int. J. Adv. Manuf. Technol. 2019. V. 103. P. 2761–2772. https://doi.org/10.1007/s00170-019-03534-3
- 3. Kazaryan A., Wang Y. Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure // J. Appl. Phys. 2002. V. 92 (12). P. 7408–7414. https://doi.org/10.1063/1.1522494
- 4. Wan X.-P., Wang K., Weinan E. Simulations of 3-D domainwall structures in thin films // Disc. and Cont. Dyn. Syst. B. 2006. V. 6 (2). P. 373–389. https://doi.org/10.3934/dcdsb.2006.6.373
- 5. Mennerich C., Wendler F., Jainta M., Nestler B. A phase-field model for the magnetic shape memory effect // Arch. Mech. 2011. V. 63. P. 549–571.
- 6. Zhang J.X., Chen L.Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials // Acta Mater. 2005. V. 53. P. 2845–2855. https://doi.org/10.1016/j.actamat.2005.03.002
- 7. Роговой А.А., Столбова О.С., Столбов О.В. Численное моделирование эволюции магнитной микроструктуры в сплавах Гейслера // ПМТФ. 2021. Т. 62.№5. С. 195–207. https://doi.org/10.15372/PMTF20210519
- 8. Rogovoy A.A., Stolbova O.S. Microstructural Modeling of the Magnetization Process in Ni2MnGa Alloy Polytwin Crystals // Magnetochemistry. 2022. V. 8. Paper No. 78. https://doi.org/10.3390/magnetochemistry8080078
- 9. Rogovoy A.A., Stolbova O.S. An approach to describe the twinning and detwinning processes of the martensitic structure in ferromagnetic alloy with shape memory in magnetic and force fields // Mech. Adv. Mater. Struct. 2025. V. 32. No. 5. P. 794–814. https://doi.org/10.1080/15376494.2024.2355627
- 10. Rogovoy A.A., Stolbova O.S. The relation for determining the resulting direction of the magnetization vector obtained from the Landau-Lifshitz-Gilbert equation // Phys. Met. Metal. 2025. V. 126. No. 8. P. 855–870. https://doi.org/10.1134/S0031918X25601155
- 11. Brown W.F. Micromagnetics. Wiley. 1963. 273 p.
- 12. Heczko O., Jurek K., Ullakko K. Magnetic properties and domain structure of magnetic shape memory NiMn-Ga alloy // J. Magn. Magn. Mater. 2001. V. 226–230. P. 996–998. https://doi.org/10.1016/S0304-8853 (00)01170-7
- 13. Heczko O., Straka L. Temperature dependence and temperature limits of magnetic shape memory effect // Appl. Phys. 2003. V. 94 (11). P. 7139–7143. https://doi.org/10.1063/1.1626800
- 14. Heczko O., Bradshaw V. Magnetic domain structure and magnetically-induced reorientation in Ni-MnGa magnetic shape memory alloy // Acta Phys. Pol. A. 2017. V. 131 (4). P. 1063–1065. https://doi.org/10.12693/APhysPolA.131.1063.
- 15. Pardo E., Sanchez A., Chen D.X. Transverse demagnetizing factors of long rectangular bars. II. Numerical calculations for arbitrary susceptibility // J. Appl. Phys. 2002. V. 91. No. 8. P. 5260–5267. https://doi.org/10.1063/1.1459746