RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

A NEW APPROACH TO MODELING THE MAGNETIC BEHAVIOR OF HEUSLER ALLOY

PII
S3034621525090055-1
DOI
10.7868/S3034621525090055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 9
Pages
1001-1012
Abstract
This paper discusses a new approach to modeling the magnetic behavior of a Heusler alloy. The magnetization distribution in a sample is obtained by solving an equation that determines the resulting direction of the magnetization vector. This equation follows from the Landau-Lifshitz-Gilbert equation, which describes the entire process history. The demagnetization field is defined through a scalar magnetic potential using magnetostatic equations. These equations are associated with variational equations, which in many cases allows us to reduce the requirements for the smoothness of the desired solution and is very convenient for the numerical implementation of the problem. An iterative algorithm for sequentially refining the magnetization and potential is proposed. Numerical modeling of the steady-state magnetization distribution within a two-dimensional sample is performed, as well as the demagnetization field both within the sample and in the surrounding space for various external magnetic field values.
Keywords
сплав Гейслера вытекающее из уравнения Ландау—Лифшица—Гильберта соотношение вариационная постановка метод конечных элементов
Date of publication
26.10.2025
Year of publication
2025
Number of purchasers
0
Views
56

References

  1. 1. Васильев А.Н., Бучельников В.Д., Такаги Т., Ховайло В.В., Эстрин Э.И. Ферромагнетики с памятью формы // Успехи физич. наук. 2003. Т. 173. № 6. С. 577–607. https://doi.org/10.3367/UFNr.0173.200306a.0577
  2. 2. Bachaga T., Zhang J., Khitouni M., Sunol J.J. NiMn-based Heusler magnetic shape memory alloys: A review // Int. J. Adv. Manuf. Technol. 2019. V. 103. P. 2761–2772. https://doi.org/10.1007/s00170-019-03534-3
  3. 3. Kazaryan A., Wang Y. Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure // J. Appl. Phys. 2002. V. 92 (12). P. 7408–7414. https://doi.org/10.1063/1.1522494
  4. 4. Wan X.-P., Wang K., Weinan E. Simulations of 3-D domainwall structures in thin films // Disc. and Cont. Dyn. Syst. B. 2006. V. 6 (2). P. 373–389. https://doi.org/10.3934/dcdsb.2006.6.373
  5. 5. Mennerich C., Wendler F., Jainta M., Nestler B. A phase-field model for the magnetic shape memory effect // Arch. Mech. 2011. V. 63. P. 549–571.
  6. 6. Zhang J.X., Chen L.Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials // Acta Mater. 2005. V. 53. P. 2845–2855. https://doi.org/10.1016/j.actamat.2005.03.002
  7. 7. Роговой А.А., Столбова О.С., Столбов О.В. Численное моделирование эволюции магнитной микроструктуры в сплавах Гейслера // ПМТФ. 2021. Т. 62.№5. С. 195–207. https://doi.org/10.15372/PMTF20210519
  8. 8. Rogovoy A.A., Stolbova O.S. Microstructural Modeling of the Magnetization Process in Ni2MnGa Alloy Polytwin Crystals // Magnetochemistry. 2022. V. 8. Paper No. 78. https://doi.org/10.3390/magnetochemistry8080078
  9. 9. Rogovoy A.A., Stolbova O.S. An approach to describe the twinning and detwinning processes of the martensitic structure in ferromagnetic alloy with shape memory in magnetic and force fields // Mech. Adv. Mater. Struct. 2025. V. 32. No. 5. P. 794–814. https://doi.org/10.1080/15376494.2024.2355627
  10. 10. Rogovoy A.A., Stolbova O.S. The relation for determining the resulting direction of the magnetization vector obtained from the Landau-Lifshitz-Gilbert equation // Phys. Met. Metal. 2025. V. 126. No. 8. P. 855–870. https://doi.org/10.1134/S0031918X25601155
  11. 11. Brown W.F. Micromagnetics. Wiley. 1963. 273 p.
  12. 12. Heczko O., Jurek K., Ullakko K. Magnetic properties and domain structure of magnetic shape memory NiMn-Ga alloy // J. Magn. Magn. Mater. 2001. V. 226–230. P. 996–998. https://doi.org/10.1016/S0304-8853 (00)01170-7
  13. 13. Heczko O., Straka L. Temperature dependence and temperature limits of magnetic shape memory effect // Appl. Phys. 2003. V. 94 (11). P. 7139–7143. https://doi.org/10.1063/1.1626800
  14. 14. Heczko O., Bradshaw V. Magnetic domain structure and magnetically-induced reorientation in Ni-MnGa magnetic shape memory alloy // Acta Phys. Pol. A. 2017. V. 131 (4). P. 1063–1065. https://doi.org/10.12693/APhysPolA.131.1063.
  15. 15. Pardo E., Sanchez A., Chen D.X. Transverse demagnetizing factors of long rectangular bars. II. Numerical calculations for arbitrary susceptibility // J. Appl. Phys. 2002. V. 91. No. 8. P. 5260–5267. https://doi.org/10.1063/1.1459746
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library