ОФНФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

ПЕРЕКЛЮЧЕНИЕ МАГНИТОСОПРОТИВЛЕНИЯ СПИНОВОГО КЛАПАНА С ПЛАНАРНОЙ МАГНИТНОЙ АНИЗОТРОПИЕЙ, ИНДУЦИРОВАННОЕ ПЕРЕДАЧЕЙ СПИН-ОРБИТАЛЬНОГО КРУТЯЩЕГО МОМЕНТА

Код статьи
S3034621525090065-1
DOI
10.7868/S3034621525090065
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 126 / Номер выпуска 9
Страницы
1013-1021
Аннотация
Методом магнетронного напыления изготовлены наноструктуры типа спиновый клапан с планарной магнитной анизотропией, малой величиной поля взаимодействия между свободным и референтным слоем и буферным слоем β-Та. В микрообъектах на основе спиновых клапанов реализовано переключение между высоко- и низкорезистивным состояниями, инициированное импульсом тока и обусловленное передачей спин-орбитального крутящего момента. Показано, что полный поворот магнитного момента свободного слоя CoFe, соседствующего со слоем β-Та, происходит при циклическом изменении силы тока в импульсе. Необходимая для переключения плотность тока составила j ≈ 3·10 А/м.
Ключевые слова
спиновый клапан планарная магнитная анизотропия спин-орбитроника спин-орбитальная связь спиновый эффект Холла спиновая инжекция магнитосопротивление
Дата публикации
26.10.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
54

Библиография

  1. 1. Cao Y., Xing G., Lin H., Zhang N., Zheng H., Wang K. Prospect of Spin-Orbitronic Devices and Their Applications // iScience. 2020. V. 23. P. 101614. https://doi.org/10.1016/j.isci.2020.101614
  2. 2. Gawade T., Borole U., Behera B., Khan J., Barshilia H., Chowdhury P. Giant magnetoresistance (GMR) spin-valve based magnetic sensor with linear and bipolar characteristics for low current detection // JMMM. 2023. V. 573. P. 170679. https://doi.org/10.1016/j.jmmm.2023.170679
  3. 3. Wu H., Zhang X., Wan C.H., Tao B.S., Huang L., Kong W.J., Han X.F. Hanle magnetoresistance: The role of edge spin accumulation and interfacial spin current // Phys. Rev. B. 2016. V. 94. P. 174407. https://doi.org/10.1103/PhysRevB.94.174407
  4. 4. Sala G.,Wang H., Legrand W., Gambardella P. Orbital Hanle Magnetoresistance in a 3d Transition Metal // Phys. Rev. Lett. 2023. V. 131. P. 156703. https://doi.org/10.1103/PhysRevLett.131.156703
  5. 5. Dyakonov M.I. Magnetoresistance due to Edge Spin Accumulation // Phys. Rev. Lett. 2007. V. 99. P. 126601. https://doi.org/10.1103/PhysRevLett.99.126601
  6. 6. Li J., Comstock A.H., Sun D., Xu X. Comprehensive demonstration of spin Hall Hanle effects in epitaxial Pt thin films // Phys. Rev. B. 2022. V. 106. P. 184420. https://doi.org/10.1103/PhysRevB.106.184420
  7. 7. Maruyama Y., Ohshima R., Shigematsu E., Ando Y., Shiraishi M. Modulation of Hanle magnetoresistance in an ultrathin platinum film by ionic gating // Appl. Phys. Exp. 2023. V. 16. P. 023004. https://doi.org/10.35848/1882-0786/acbc0a
  8. 8. V´ elez S., Golovach V.N., Bedoya-Pinto A., Isasa M., Sagasta E., Abadia M., Rogero C., Hueso L.E., Bergeret F.S., Casanova F. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling // Phys. Rev. Lett. 2016. V. 116. P. 016603. https://doi.org/10.1103/PhysRevLett.116.016603
  9. 9. Zhu L., Ralph D.C., Buhrman R.A. Maximizing spinorbit torque generated by the spin Hall effect of Pt // Appl. Phys. Rev. 2021. V. 8. P. 031308. https://doi.org/10.1063/5.0059171
  10. 10. Kim Y., Jeong W., Yun D., Ahn G.-E., Lee O.J. Spin and orbital properties of perpendicular magnetic anisotropy for spin-orbit torque material devices // Appl. Surf. Sci. 2021. V. 544. P. 148959. https://doi.org/10.1016/j.apsusc.2021.148959
  11. 11. Yu G., Upadhyaya P., Wong K.L., Jiang W., Alzate J.G., Tang J., Amiri P.K.,Wang K.L. Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation // Phys. Rev. B. 2014. V. 89. P. 104421. https://doi.org/10.1103/Phys. Rev. B.89.104421
  12. 12. Liu L.Q., Lee O.J., Gudmundsen T.J., Ralph D.C., Buhrman R.A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect // Phys. Rev. Lett. 2012. V. 109. P. 096602. https://doi.org/10.1103/Phys. Rev. Lett.109.096602
  13. 13. Chen Y.-C., Jia Q., Yang Y., Huang Y.-H., Lyu D., Peterson T. J., Wang J.-P. Enhanced VoltageControlled Magnetic Anisotropy and Field-Free Magnetization Switching Achieved with High Work Function and Opposite Spin Hall Angles in W/Pt/WSOT Tri-Layers // Adv. Funct. Mater. 2025. V. 35. P. 2416570. https://doi.org/10.1002/adfm.202416570
  14. 14. Liu L., Pai C.-F., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum // Science. 2012. V. 336. P. 555–558. https://doi.org/10.1126/science.1218197
  15. 15. Pai C.-F., Liu L., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten // Appl. Phys. Lett. 2012. V. 101. P. 122404. https://doi.org/10.1063/1.4753947
  16. 16. Han X., Wang X., Wan C., Yu G., Lv X. Spin-orbit torques: Materials, physics, and devices // Appl. Phys. Lett. 2021. V. 118. P. 120502. https://doi.org/10.1063/5.0039147
  17. 17. Brataas A., Kent A.D., Ohno H. Current-induced torques in magnetic materials // Nat. Mat. 2012. V. 11. P. 372–381. https://doi.org/10.1038/NMAT3311
  18. 18. Ustinov V.V., Naumova L.I., Zavornitsyn R.S., Yasyulevich I.A., Maksimova I.K., Krinitsina T.P., Pavlova A.Y., Proglyado V.V., Milyaev M.A. Spin-orbit coupling mediated size effects in magnetoresistance of Ta nanolayers // JETP. 2024. V. 165. P. 132–144. https://doi.org/10.31857/S00444510240102e3
  19. 19. Zavornitsyn R.S., Naumova L.I., Milyaev M.A., Maksimova I.K., Proglyado V.V., Ustinov V.V. Longitudinal Magnetoresistance of Ta/FeMn/Ta, Ta/Dy/Ta, and Ta/CoFe/Ta Nanostructures Caused by Spin Hall Effect // Bull. RAS: Phys. 2025. V. 89. P. 492–499. https://doi.org/10.1134/S1062873825710694
  20. 20. Наумова Л.И., Заворницын Р.С., Миляев М.А., Гермизина А.А., Максимова И.К., Чернышова Т.А., Павлова А.Ю., Проглядо В.В., Устинов В.В. Тепловые и спин-орбитальные эффекты при действии тока на спиновые клапаны, содержащие слои β-Ta и сплава NiFeCr // ФММ. 2024. Т. 125. С. 1477–1486.
  21. 21. Наумова Л.И., Заворницын Р.С., Миляев М.А., Девятериков Д.И., Русалина А.С., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Устинов В.В. Гелимагнитная и кристаллографическая текстуры роста нанослоев диспрозия на буферных слоях Co90Fe10, Nb и β-Ta // ФММ. 2023. Т. 124. С. 692–702.
  22. 22. Zuo J.D.,Wang Y.Q.,WuK., Zhang J.Y., Liu G., Sun J. Phase tailoring of Ta films via buffer layer-thicknesses controlling // Scripta Mater. 2022. V. 212. P. 114582. https://doi.org/10.1016/j.scriptamat.2022.114582
  23. 23. Ellis E.A.I., Chmielus M., Baker S.P. Effect of sputter pressure on Ta thin films: Beta phase formation, texture, and stresses // Acta Mater. 2018. V. 150. P. 317–326. https://doi.org/10.1016/j.actamat.2018.02.050
  24. 24. Magnuson M., Greczynski G., Eriksson F., Hultman L., H¨ ogberg H. Electronic Structure of b-Ta Films from X-ray Photoelectron Spectroscopy and Firstprinciples Calculations // Appl. Sulf. Sci. 2019. V. 470. P. 607–612. https://doi.org/10.1016/j.apsusc.2018.11.09
  25. 25. Иванова А.Г., Самодуров И.Н., Мартемьянов В.М. Магнитное поле прямоугольного проводника с током // Международный студенческий научный вестник. 2015. № 6. https://eduherald.ru/ru/article/view?id=14265
  26. 26. Xie N., Fan W., Tang M., Pan C., Zhu W., Zhou S., Qiua X. Evolution of spin Hall mechanism and spinorbit torque in (a, b) phase tantalum film // Appl. Phys. Lett. 2023. V. 123. P. 062402. https://doi.org/10.1063/5.0155881
  27. 27. Kools J.C.S. Exchange-biased spin-valves for magnetic storage // IEEE Trans. Magn. 1996. V. 32 (4). P. 3165–3184. https://doi.org/10.1109/20.508381
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека