- PII
- S3034621525090065-1
- DOI
- 10.7868/S3034621525090065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 126 / Issue number 9
- Pages
- 1013-1021
- Abstract
- Spin valves with planar magnetic anisotropy, small interlayer coupling field and the -Ta buffer layer were fabricated by magnetron sputtering. Initiated by a current pulse and caused by the transfer of spin-orbit torque switching between high- and low-resistive states is implemented in micro-objects based on the spin valves. It is shown that the complete rotation of the magnetic moment of the adjacent to the -Ta layer free CoFe layer occurs with a cyclic change in the current in a pulse. The current density required for switching is ≈ 3·10 A/m.
- Keywords
- спиновый клапан планарная магнитная анизотропия спин-орбитроника спин-орбитальная связь спиновый эффект Холла спиновая инжекция магнитосопротивление
- Date of publication
- 26.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 59
References
- 1. Cao Y., Xing G., Lin H., Zhang N., Zheng H., Wang K. Prospect of Spin-Orbitronic Devices and Their Applications // iScience. 2020. V. 23. P. 101614. https://doi.org/10.1016/j.isci.2020.101614
- 2. Gawade T., Borole U., Behera B., Khan J., Barshilia H., Chowdhury P. Giant magnetoresistance (GMR) spin-valve based magnetic sensor with linear and bipolar characteristics for low current detection // JMMM. 2023. V. 573. P. 170679. https://doi.org/10.1016/j.jmmm.2023.170679
- 3. Wu H., Zhang X., Wan C.H., Tao B.S., Huang L., Kong W.J., Han X.F. Hanle magnetoresistance: The role of edge spin accumulation and interfacial spin current // Phys. Rev. B. 2016. V. 94. P. 174407. https://doi.org/10.1103/PhysRevB.94.174407
- 4. Sala G.,Wang H., Legrand W., Gambardella P. Orbital Hanle Magnetoresistance in a 3d Transition Metal // Phys. Rev. Lett. 2023. V. 131. P. 156703. https://doi.org/10.1103/PhysRevLett.131.156703
- 5. Dyakonov M.I. Magnetoresistance due to Edge Spin Accumulation // Phys. Rev. Lett. 2007. V. 99. P. 126601. https://doi.org/10.1103/PhysRevLett.99.126601
- 6. Li J., Comstock A.H., Sun D., Xu X. Comprehensive demonstration of spin Hall Hanle effects in epitaxial Pt thin films // Phys. Rev. B. 2022. V. 106. P. 184420. https://doi.org/10.1103/PhysRevB.106.184420
- 7. Maruyama Y., Ohshima R., Shigematsu E., Ando Y., Shiraishi M. Modulation of Hanle magnetoresistance in an ultrathin platinum film by ionic gating // Appl. Phys. Exp. 2023. V. 16. P. 023004. https://doi.org/10.35848/1882-0786/acbc0a
- 8. V´ elez S., Golovach V.N., Bedoya-Pinto A., Isasa M., Sagasta E., Abadia M., Rogero C., Hueso L.E., Bergeret F.S., Casanova F. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling // Phys. Rev. Lett. 2016. V. 116. P. 016603. https://doi.org/10.1103/PhysRevLett.116.016603
- 9. Zhu L., Ralph D.C., Buhrman R.A. Maximizing spinorbit torque generated by the spin Hall effect of Pt // Appl. Phys. Rev. 2021. V. 8. P. 031308. https://doi.org/10.1063/5.0059171
- 10. Kim Y., Jeong W., Yun D., Ahn G.-E., Lee O.J. Spin and orbital properties of perpendicular magnetic anisotropy for spin-orbit torque material devices // Appl. Surf. Sci. 2021. V. 544. P. 148959. https://doi.org/10.1016/j.apsusc.2021.148959
- 11. Yu G., Upadhyaya P., Wong K.L., Jiang W., Alzate J.G., Tang J., Amiri P.K.,Wang K.L. Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation // Phys. Rev. B. 2014. V. 89. P. 104421. https://doi.org/10.1103/Phys. Rev. B.89.104421
- 12. Liu L.Q., Lee O.J., Gudmundsen T.J., Ralph D.C., Buhrman R.A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect // Phys. Rev. Lett. 2012. V. 109. P. 096602. https://doi.org/10.1103/Phys. Rev. Lett.109.096602
- 13. Chen Y.-C., Jia Q., Yang Y., Huang Y.-H., Lyu D., Peterson T. J., Wang J.-P. Enhanced VoltageControlled Magnetic Anisotropy and Field-Free Magnetization Switching Achieved with High Work Function and Opposite Spin Hall Angles in W/Pt/WSOT Tri-Layers // Adv. Funct. Mater. 2025. V. 35. P. 2416570. https://doi.org/10.1002/adfm.202416570
- 14. Liu L., Pai C.-F., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum // Science. 2012. V. 336. P. 555–558. https://doi.org/10.1126/science.1218197
- 15. Pai C.-F., Liu L., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten // Appl. Phys. Lett. 2012. V. 101. P. 122404. https://doi.org/10.1063/1.4753947
- 16. Han X., Wang X., Wan C., Yu G., Lv X. Spin-orbit torques: Materials, physics, and devices // Appl. Phys. Lett. 2021. V. 118. P. 120502. https://doi.org/10.1063/5.0039147
- 17. Brataas A., Kent A.D., Ohno H. Current-induced torques in magnetic materials // Nat. Mat. 2012. V. 11. P. 372–381. https://doi.org/10.1038/NMAT3311
- 18. Ustinov V.V., Naumova L.I., Zavornitsyn R.S., Yasyulevich I.A., Maksimova I.K., Krinitsina T.P., Pavlova A.Y., Proglyado V.V., Milyaev M.A. Spin-orbit coupling mediated size effects in magnetoresistance of Ta nanolayers // JETP. 2024. V. 165. P. 132–144. https://doi.org/10.31857/S00444510240102e3
- 19. Zavornitsyn R.S., Naumova L.I., Milyaev M.A., Maksimova I.K., Proglyado V.V., Ustinov V.V. Longitudinal Magnetoresistance of Ta/FeMn/Ta, Ta/Dy/Ta, and Ta/CoFe/Ta Nanostructures Caused by Spin Hall Effect // Bull. RAS: Phys. 2025. V. 89. P. 492–499. https://doi.org/10.1134/S1062873825710694
- 20. Наумова Л.И., Заворницын Р.С., Миляев М.А., Гермизина А.А., Максимова И.К., Чернышова Т.А., Павлова А.Ю., Проглядо В.В., Устинов В.В. Тепловые и спин-орбитальные эффекты при действии тока на спиновые клапаны, содержащие слои β-Ta и сплава NiFeCr // ФММ. 2024. Т. 125. С. 1477–1486.
- 21. Наумова Л.И., Заворницын Р.С., Миляев М.А., Девятериков Д.И., Русалина А.С., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Устинов В.В. Гелимагнитная и кристаллографическая текстуры роста нанослоев диспрозия на буферных слоях Co90Fe10, Nb и β-Ta // ФММ. 2023. Т. 124. С. 692–702.
- 22. Zuo J.D.,Wang Y.Q.,WuK., Zhang J.Y., Liu G., Sun J. Phase tailoring of Ta films via buffer layer-thicknesses controlling // Scripta Mater. 2022. V. 212. P. 114582. https://doi.org/10.1016/j.scriptamat.2022.114582
- 23. Ellis E.A.I., Chmielus M., Baker S.P. Effect of sputter pressure on Ta thin films: Beta phase formation, texture, and stresses // Acta Mater. 2018. V. 150. P. 317–326. https://doi.org/10.1016/j.actamat.2018.02.050
- 24. Magnuson M., Greczynski G., Eriksson F., Hultman L., H¨ ogberg H. Electronic Structure of b-Ta Films from X-ray Photoelectron Spectroscopy and Firstprinciples Calculations // Appl. Sulf. Sci. 2019. V. 470. P. 607–612. https://doi.org/10.1016/j.apsusc.2018.11.09
- 25. Иванова А.Г., Самодуров И.Н., Мартемьянов В.М. Магнитное поле прямоугольного проводника с током // Международный студенческий научный вестник. 2015. № 6. https://eduherald.ru/ru/article/view?id=14265
- 26. Xie N., Fan W., Tang M., Pan C., Zhu W., Zhou S., Qiua X. Evolution of spin Hall mechanism and spinorbit torque in (a, b) phase tantalum film // Appl. Phys. Lett. 2023. V. 123. P. 062402. https://doi.org/10.1063/5.0155881
- 27. Kools J.C.S. Exchange-biased spin-valves for magnetic storage // IEEE Trans. Magn. 1996. V. 32 (4). P. 3165–3184. https://doi.org/10.1109/20.508381