RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

STOCHASTIC MODEL OF STRUCTURAL STATES OF COPPER UNDER HIGH PRESSURE TORSION IN BRIDGMAN ANVILS

PII
S3034621525090105-1
DOI
10.7868/S3034621525090105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 9
Pages
1049-1058
Abstract
Despite the continuously expanding volume of experimental data on ultrafine-grained materials produced by severe plastic deformation, the occurrence of competing structure-forming processes (strengthening/relaxation) still requires a theoretical explanation. Based on the analysis of hardness data for technically pure copper subjected to shear under pressure in Bridgman anvils, the staging of strengthening was established. To account for the stochastic nature of the manifestation of relaxation processes during deformation, a model for analyzing material hardness data has been proposed, which is based on three postulates: (a) the structural response to hardness measurement, characteristic of its micro/nanostructural state, including the possible occurrence of a relaxation process, is considered as a random factor; (b) each structural state can be associated with its unique set of responses to hardness measurement; (c) the superposition of structural states is possible. It was shown that each structural response to hardness measurement can be associated with a specific structural state. Meanwhile, the evolution of hardness with applied deformation is a sequential change of combinations of three structural states (cell structure, microcrystalline without significant influence of dynamic recrystallization, and one formed by dynamic recrystallization), which determine the stages of strain hardening.
Keywords
интенсивная пластическая деформация медь твёрдость динамическая рекристаллизация
Date of publication
01.11.2025
Year of publication
2025
Number of purchasers
0
Views
59

References

  1. 1. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J., Bryla K., ˇC ´ı ˇ zek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janecˇek M., Kawasaki M., Kra´l P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., R´ ev ´ esz A., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances // Mater. Res. Lett. 2022. V. 10. No. 4. P. 163–256. https://doi.org/10.1080/21663831.2022.2029779
  2. 2. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zechetbauer M.J., Zhu Y.T. Producing bulk ultrafinegrained materials by severe plastic deformation // JOM. 2006. V. 58. P. 33–39. https://doi.org/10.1007/s11837-006-0213-7
  3. 3. Segal V.M. Review: modes and processes of severe plastic deformation (SPD) // Materials. 2018. V. 11. No. 7. P. 1175. https://doi.org/10.3390/ma11071175
  4. 4. Voronova L.M., Chashchukhina T.I., Talantsev E.F., Degtyarev M.V., Gapontseva T.M. Advanced modelling tool to extract the structural state boundaries from the hardness-strain experiments // Int. J. Refract. Met. Hard Mater. 2024. V. 122. P. 106719. https://doi.org/10.1016/j.ijrmhm.2024.106719
  5. 5. Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron // Crystals. 2023. V. 13. P. 413. https://doi.org/10.3390/cryst13030413
  6. 6. Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Direct influence of recovery behavior on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 369–377. http://doi.org/10.1016/j.jmrt.2017.05.005
  7. 7. Чащухина Т.И., Дегтярев М.В., Романова М.Ю., Воронова Л.М. Динамическая рекристаллизация в меди, деформированной сдвигом под высоким давлением // ФММ. 2004. Т. 98. No. 6. С. 98–107.
  8. 8. Karamyshev K.Yu., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Dynamic Polygonization in Nickel during High-Pressure Torsion // Phys. Met. Metal. 2025. V. 126. No. 1. P. 101–110. https://doi.org/10.1134/S0031918X24602087
  9. 9. Degtyarev M.V., Chashchukhina T.I., Voronova L.M. Thermal stability of a submicrocrystalline structure of metals and alloys // Phys. Met. Metal. 2018. V. 119. No. 13. P. 1329–1332. https://doi.org/10.1134/S0031918X18130045
  10. 10. Talantsev E.F., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Piecewise model with two overlapped stages for structure formation and hardening upon high-pressure torsion // Metall. Mater. Trans. A. 2021. V. 52. P. 4510. https://doi.org/10.1007/s11661-021-06403-5
  11. 11. Wu X.L., Zhu Y.T., Wei Y.G., Wei Q. Strong strain hardening in Nanocrystalline nickel // Phys. Rev. Lett. 2009. V. 103. P. 205504. https://doi.org/10.1103/PhysRevLett.103.205504
  12. 12. Marulanda Cardona D.M., Wongsa-Ngam J., Jimenez H., Langdon T.G. Effects on hardness and microstructure of AISI 1020 low-carbon steel processed by highpressure torsion // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 355–360. https://doi.org/10.1016/j.jmrt.2017.05.002
  13. 13. Zhang J., Gao N., Starink M.J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: strain reversal experiments and a dislocation based model // Mater. Sci. Eng. A. 2011. V. 528. P. 2581–2591. https://doi.org/10.1016/j.msea.2010.11.079
  14. 14. Чащухина Т.И., Дегтярев М.В., Воронова Л.М. Влияние давления на эволюцию структуры меди при большой пластической деформации // ФММ. 2010. Т. 109. No. 2. С. 216–224.
  15. 15. Edalati K., Wang Q., Enikeev N.A., Peters L.-J., Zehetbauer M.J., Schafler E. Significance of strain rate in severe plastic deformation on steady-state microstructure and strength // Mater. Sci. Eng. A. 2022. V. 859. P. 144231. https://doi.org/10.1016/j.msea.2022.144231
  16. 16. Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Pokryshkina D.K. Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils // Phys. Met. Metal. 2011. V. 111. P. 304–313. https://doi.org/10.1134/S0031918X11020049
  17. 17. Орлова Д.К., Чащухина Т.И., Воронова Л.М., Дегтярев М.В. Влияние температурно-скоростных условий деформации в наковальнях Бриджмена на формирование структуры в меди технической чистоты //ФММ.2015. Т. 116.№9. С. 1001–1008. https://doi.org/10.7868/S0015323015090132
  18. 18. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: fundamentals and applications // Prog. Mater. Sci. 2008. V. 53. P. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
  19. 19. Pereira P.H.R., Figueiredo R.B. Finite element modelling of high-pressure torsion: an overview // Mater. Trans. 2019. V. 60. No. 7. P. 1139–1150. https://doi.org/10.2320/matertrans.MF201906
  20. 20. Edalati K., Imamura K., Kiss T., Horita Z. Equal-Channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain // Mater. Trans. 2012. V. 53. No. 1. P. 123–127. https://doi.org/10.2320/matertrans.MD201109
  21. 21. Jonas J.J., Ghosh C., Toth L.S. The equivalent strain in high pressure torsion // Mat. Sci. Eng. A. 2014. V. 607. P. 530–535. https://doi.org/10.1016/j.msea.2014.04.046
  22. 22. Popov V.V., Popova E.N., Stolbovsky A.V., Pilyugin V.P. The Structure of Nb Obtained by Severe Plastic Deformation and Its Thermal Stability // Mat. Sci. Forum. 2011. V. 667–669. P. 409–414. https://doi.org/10.4028/ www.scientific.net/MSF.667-669.409
  23. 23. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion // Act. Mater. 2007. V. 55. P. 6039–6050. https://doi.org/10.1016/j.actamat.2007.04.017
  24. 24. Stolbovsky A. The Use of Finite Mixture Models and EM-Algorithm to Analyze Grain Structure in HPTNanostructured Metallic Materials // IOP Conf. Series: Materials Science and Engineering. 2020. V. 969. P. 012084. https://doi.org/10.1088/1757899X/969/1/012084
  25. 25. Кузнецов П.В., Столбовский А.В., Беляева И.В. Количественная характеристика межкристаллитных границ в аустенитной нержавеющей стали с ультрамелкозернистой структурой методом кластерного анализа // Физич. мезомеханика. 2023. V. 26.№2. P. 57–78. https://doi.org/10.55652/1683-805X_2023_26_2_57
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library