- Код статьи
- S3034621525090105-1
- DOI
- 10.7868/S3034621525090105
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 126 / Номер выпуска 9
- Страницы
- 1049-1058
- Аннотация
- Несмотря на постоянно расширяющийся объём экспериментальных данных по ультрамелкозернистым материалам, полученным интенсивной пластической деформацией, протекание структурообразующих конкурирующих процессов (упрочнение/релаксация) всё ещё нуждается в теоретическом объяснении. По результатам анализа данных твёрдости технически чистой меди, подвергнутой сдвигу под давлением в наковальнях Бриджмена, установлена стадийность упрочнения. С целью учёта стохастической природы проявления релаксационных процессов при деформации для анализа данных о твёрдости материала предложена модель, которая основывается на трёх постулатах: (а) отклик структуры на измерение твёрдости, характерный для её микро-/наноструктурного состояния, включая возможное протекание процесса релаксации, учитывается как случайный фактор; (б) каждому структурному состоянию можно поставить в соответствие его уникальный набор откликов на измерение твёрдости; (в) возможна суперпозиция структурных состояний. Показано, что каждому отклику структуры на измерение твёрдости можно поставить в соответствие конкретное структурное состояние. В то время как эволюция твёрдости от приложенной деформации является последовательной сменой комбинаций трёх структурных состояний (ячеистая структура, микрокристаллическая без значительного влияния динамической рекристаллизации и сформированная динамической рекристаллизацией), которые и определяют стадии деформационного упрочнения.
- Ключевые слова
- интенсивная пластическая деформация медь твёрдость динамическая рекристаллизация
- Дата публикации
- 01.11.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 58
Библиография
- 1. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J., Bryla K., ˇC ´ı ˇ zek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janecˇek M., Kawasaki M., Kra´l P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., R´ ev ´ esz A., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances // Mater. Res. Lett. 2022. V. 10. No. 4. P. 163–256. https://doi.org/10.1080/21663831.2022.2029779
- 2. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zechetbauer M.J., Zhu Y.T. Producing bulk ultrafinegrained materials by severe plastic deformation // JOM. 2006. V. 58. P. 33–39. https://doi.org/10.1007/s11837-006-0213-7
- 3. Segal V.M. Review: modes and processes of severe plastic deformation (SPD) // Materials. 2018. V. 11. No. 7. P. 1175. https://doi.org/10.3390/ma11071175
- 4. Voronova L.M., Chashchukhina T.I., Talantsev E.F., Degtyarev M.V., Gapontseva T.M. Advanced modelling tool to extract the structural state boundaries from the hardness-strain experiments // Int. J. Refract. Met. Hard Mater. 2024. V. 122. P. 106719. https://doi.org/10.1016/j.ijrmhm.2024.106719
- 5. Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron // Crystals. 2023. V. 13. P. 413. https://doi.org/10.3390/cryst13030413
- 6. Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Direct influence of recovery behavior on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 369–377. http://doi.org/10.1016/j.jmrt.2017.05.005
- 7. Чащухина Т.И., Дегтярев М.В., Романова М.Ю., Воронова Л.М. Динамическая рекристаллизация в меди, деформированной сдвигом под высоким давлением // ФММ. 2004. Т. 98. No. 6. С. 98–107.
- 8. Karamyshev K.Yu., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Dynamic Polygonization in Nickel during High-Pressure Torsion // Phys. Met. Metal. 2025. V. 126. No. 1. P. 101–110. https://doi.org/10.1134/S0031918X24602087
- 9. Degtyarev M.V., Chashchukhina T.I., Voronova L.M. Thermal stability of a submicrocrystalline structure of metals and alloys // Phys. Met. Metal. 2018. V. 119. No. 13. P. 1329–1332. https://doi.org/10.1134/S0031918X18130045
- 10. Talantsev E.F., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Piecewise model with two overlapped stages for structure formation and hardening upon high-pressure torsion // Metall. Mater. Trans. A. 2021. V. 52. P. 4510. https://doi.org/10.1007/s11661-021-06403-5
- 11. Wu X.L., Zhu Y.T., Wei Y.G., Wei Q. Strong strain hardening in Nanocrystalline nickel // Phys. Rev. Lett. 2009. V. 103. P. 205504. https://doi.org/10.1103/PhysRevLett.103.205504
- 12. Marulanda Cardona D.M., Wongsa-Ngam J., Jimenez H., Langdon T.G. Effects on hardness and microstructure of AISI 1020 low-carbon steel processed by highpressure torsion // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 355–360. https://doi.org/10.1016/j.jmrt.2017.05.002
- 13. Zhang J., Gao N., Starink M.J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: strain reversal experiments and a dislocation based model // Mater. Sci. Eng. A. 2011. V. 528. P. 2581–2591. https://doi.org/10.1016/j.msea.2010.11.079
- 14. Чащухина Т.И., Дегтярев М.В., Воронова Л.М. Влияние давления на эволюцию структуры меди при большой пластической деформации // ФММ. 2010. Т. 109. No. 2. С. 216–224.
- 15. Edalati K., Wang Q., Enikeev N.A., Peters L.-J., Zehetbauer M.J., Schafler E. Significance of strain rate in severe plastic deformation on steady-state microstructure and strength // Mater. Sci. Eng. A. 2022. V. 859. P. 144231. https://doi.org/10.1016/j.msea.2022.144231
- 16. Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Pokryshkina D.K. Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils // Phys. Met. Metal. 2011. V. 111. P. 304–313. https://doi.org/10.1134/S0031918X11020049
- 17. Орлова Д.К., Чащухина Т.И., Воронова Л.М., Дегтярев М.В. Влияние температурно-скоростных условий деформации в наковальнях Бриджмена на формирование структуры в меди технической чистоты //ФММ.2015. Т. 116.№9. С. 1001–1008. https://doi.org/10.7868/S0015323015090132
- 18. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: fundamentals and applications // Prog. Mater. Sci. 2008. V. 53. P. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
- 19. Pereira P.H.R., Figueiredo R.B. Finite element modelling of high-pressure torsion: an overview // Mater. Trans. 2019. V. 60. No. 7. P. 1139–1150. https://doi.org/10.2320/matertrans.MF201906
- 20. Edalati K., Imamura K., Kiss T., Horita Z. Equal-Channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain // Mater. Trans. 2012. V. 53. No. 1. P. 123–127. https://doi.org/10.2320/matertrans.MD201109
- 21. Jonas J.J., Ghosh C., Toth L.S. The equivalent strain in high pressure torsion // Mat. Sci. Eng. A. 2014. V. 607. P. 530–535. https://doi.org/10.1016/j.msea.2014.04.046
- 22. Popov V.V., Popova E.N., Stolbovsky A.V., Pilyugin V.P. The Structure of Nb Obtained by Severe Plastic Deformation and Its Thermal Stability // Mat. Sci. Forum. 2011. V. 667–669. P. 409–414. https://doi.org/10.4028/ www.scientific.net/MSF.667-669.409
- 23. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion // Act. Mater. 2007. V. 55. P. 6039–6050. https://doi.org/10.1016/j.actamat.2007.04.017
- 24. Stolbovsky A. The Use of Finite Mixture Models and EM-Algorithm to Analyze Grain Structure in HPTNanostructured Metallic Materials // IOP Conf. Series: Materials Science and Engineering. 2020. V. 969. P. 012084. https://doi.org/10.1088/1757899X/969/1/012084
- 25. Кузнецов П.В., Столбовский А.В., Беляева И.В. Количественная характеристика межкристаллитных границ в аустенитной нержавеющей стали с ультрамелкозернистой структурой методом кластерного анализа // Физич. мезомеханика. 2023. V. 26.№2. P. 57–78. https://doi.org/10.55652/1683-805X_2023_26_2_57