RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

MODELING OF THE DIFFUSION PROCESS IN A COPPER–ALUMINUM BIMATERIAL

PII
S30346215S0015323025070096-1
DOI
10.7868/S3034621525070096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 7
Pages
817-825
Abstract
The study is devoted to the numerical modeling of diffusion processes in aluminum-copper bimetals using the finite element method. The focus is on the peculiarities of interdiffusion during the heat treatment of Al–Cu bimetallic materials and on the processes of formation and growth of intermetallic compounds in the Al–Cu system under elevated temperatures. The application of a migration diffusion model made it possible to account for the influence of temperature and stress concentration on the annealing process and on the interaction of materials and compounds under heating – an aspect unattainable with the standard diffusion model. This approach also enabled the construction of concentration distribution curves for copper and aluminum at different annealing temperatures and durations. A computational algorithm was developed for the formation and growth of intermetallic compounds in the sample, taking into account annealing temperature and the concentration of diffusing elements in accordance with the Al–Cu phase equilibrium diagram. As a result, intermetallic layers forming at the metal–metal interface during interdiffusion of copper and aluminum were obtained, which is consistent with experimental findings. It is shown that the numerical experiment demonstrates good qualitative and quantitative agreement with experimental data on the thickness of the diffusion layer at the Al–Cu interface, with the simulated phase dimensions matching those observed experimentally within the margin of error.
Keywords
алюминий медь взаимная диффузия численное моделирование интерметаллические соединения метод конечных элементов миграционная модель
Date of publication
26.08.2025
Year of publication
2025
Number of purchasers
0
Views
47

References

  1. 1. Wadsworth J., Lesuer D.R. Ancient and modern laminated composites – from the Great Pyramid of Gizch to Y2K // Materials Characteriz. 2000. V. 45. No. 4–5. P. 289–313.
  2. 2. Chen C.Y., Hwang W.S. Effect of annealing on the interfacial structure of aluminum-copper joints // Mater. Trans. 2007. V. 48. No. 7. P. 1938–1947.
  3. 3. Hua FA., Song H.W., Sun T., Li J.P. Inter-diffusion based analytical model for growth kinetics of IMC layers at roll bonded cu/ai interface during annealing process // Met. Mater. Intern. 2020. V. 26. P. 333–345.
  4. 4. Nokhrin A., Shadrina I., Chuvil'deev V., Kopylov V., Berendeev N., Murashov A., Bobrov A., Tabachkova N., Smirnova E., Faddeev M. Investigation of thermal stability of microstructure and mechanical properties of bimetallic fine grained wires from Al–0.25% Zr–(Sc, Hf) alloys // Mater. 2021. V. 15. No. 1. P. 185.
  5. 5. Hug E., Bellido N. Brittleness study of intermetallic (Cu, Al) layers in copper clad aluminium thin wires // Mater. Sci. Eng.: A. 2011. V. 528. No. 22. P. 7103–7106.
  6. 6. Wu S.P., Cai X.L., Zhou L., Yang C.J., Li W.H., Cheng Y.C. Contribution of Mechanical Activation on the Growth of Intermetallic Compound Layers at the Cu/Al Interface during Vacuum Hot Pressing // Trans. Indian Institute of Metals. 2022. V. 75. No. 8. P. 2129–2137.
  7. 7. Amani H., Soltanieh M. Intermetallic phase formation in explosively welded Al/Cu bimetals // Metal. Mater. Trans. B. 2016. V. 47. P. 2524–2534.
  8. 8. Cao F., Zhang P., Zou J., Wang T. The formation and growth of intermetallic compounds during interdiffusion of Al/Cu bimetals // Mater. Research Express. 2022. V. 9. No. 5. P. 056503.
  9. 9. Haidemenopoulos G.N., Zervaki A.D., Kamousi H., Honizopoulos E., Mangana F. Fracture behavior of bimetallic Al-Cu LBW joints // Proceedings of ICEAF III. 2013. P. 26–28.
  10. 10. Галлагер Р. Метод конечных элементов. Основы. Пер. с англ. М.: Мир, 1984. 428 с., ил.
  11. 11. Kirchheim R. Stress and electromigration in Al lines of integrated circuits // Acta Metal. Mater. 1992. V. 40. No. 2. P. 309–323.
  12. 12. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969. 608 с.
  13. 13. Okamoto H., Schlesinger M.E., Mueller E.M. (ed.). Alloy phase diagrams. ASM international, 2016.
  14. 14. Zhou W., Liu L., Li B., Song Q., Wu P. Structural, elastic, and electronic properties of Al Cu intermetallics from first principles calculations // J. Electronic Mater. 2009. V. 38. P. 356–364.
  15. 15. Zobac O., Kroupa A., Zemanova A., Richter K.W. Experimental description of the Al Cu binary phase diagram // Metal. Mater. Trans. A. 2019. V. 50. P. 3805–3815.
  16. 16. https://ansyshelp.ansys.com
  17. 17. Крейт Ф., Блэк У. Основы теплопередачи. Пер. с англ. под ред. Н. А. Анфимова. М.: Мир, 1983. 512 с., ил.
  18. 18. Weide Zaage K., Kashanchi F., Aubel O. Simulation of migration effects in nanoscaled copper metallizations // Microelectronics Reliability. 2008. V. 48. No. 8. P. 1398–1402.
  19. 19. Фрост Г.Дж., Эшби М.Ф. Карты механизмов деформации. Челябинск: Металлургия, 1989. 328 с.
  20. 20. Wei Y., Chen Y., Niu R., Yang Q., Luo Y., Zou J. Study on the Thermal Conductivity of Cu/Al Joints with Different Interfacial Microstructures // Adv. Mater. Sci. Eng. 2022. V. 2022. No. 1. P. 7040685.
  21. 21. Чувильдеев В.Н. Неравновесные границы зерен в металлах. Теория и приложения. М.: Физматлит, 2004. 303 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library