RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

ON THE POSSIBILITY OF CREATING HEAT RESISTANT ALUMINUM DEFORMABLE ALLOYS BASED ON THE Al–Cu–Mn–Ni SYSTEM WITHOUT THE USE OF HARDENING HEAT TREATMENT

PII
S30346215S0015323025070115-1
DOI
10.7868/S3034621525070115
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 7
Pages
833-842
Abstract
The phase composition of ingots and hot-rolled sheets of alloys in the Al–Cu–Mn–Ni system, containing 6–8% Cu, 2% Mn, and up to 4% Ni (mass %), was analyzed. A structure for the phase diagram in the aluminum region is proposed, according to which in the solid state there may be three four-phase areas involving a solid solution based on aluminum and various intermetallic compounds. The possibility of creating heat-resistant deformable aluminum alloys, whose structure consists of an aluminum matrix containing Al₂₀Cu₂Mn₃ dispersoids and eutectic phases such as Al(Cu,Ni), has been substantiated.
Keywords
деформируемые алюминиевые сплавы система Al–Cu–Mn–Ni фазовый состав эвтектика дисперсоиды Al₂₀Cu₂Mn₃
Date of publication
06.08.2025
Year of publication
2025
Number of purchasers
0
Views
58

References

  1. 1. Polmear I., StJohn D., Nie J.F., Qian M. Physical metallurgy of aluminium alloys / In: Light Alloys. 5th ed. London: Elsevier, 2017. P. 31–107.
  2. 2. Ashkenazi D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives // Technol. Forecast. Soc. Change. 2019. V. 143. P. 101–113. https://doi.org/10.1016/j.techfore.2019.03.011
  3. 3. Pedneault J., Majeau-Bettez G., Pauliuk S., Margni M. Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways // J. Ind. Ecol. 2022. V. 26. No. 5. P. 1728–1746. https://doi.org/10.1111/jiec.13321
  4. 4. Sivanur K., Umananda K.V., Pai D. Advanced materials used in automotive industry—a review // AIP Conference Proceedings. 2021. V. 2317. P. 020032. https://doi.org/10.1063/5.0036149
  5. 5. Белов Н.А., Белов В.Д., Савченко С.В., Самошина М.Е., Чернов В.А., Алабин А.Н. Поршневые силумины. М.: Руда и металлы, 2011. 246 c. ISBN: 978-5-98191-059-3
  6. 6. Cai Q., Fang Ch., Lordan E., Wang Y., Chang I.T.H., Cantor B. A novel Al–Si–Ni–Fe near-eutectic alloy for elevated temperature applications // Scr. Mater. 2023. V. 237. P. 115707. https://doi.org/10.1016/j.scriptamat.2023.115707
  7. 7. Mirzaee-Moghadam M., Lashgari H.R., Zangeneh Sh., Rasaee S., Seyfor M., Asnavandi M., Mojtahedi M. Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds // Mater. Chem. Phys. 2022. V. 279. P. 125758. https://doi.org/10.1016/j.matchemphys.2022.125758
  8. 8. Govind V., Praveen K.K., Vignesh R.V., Vishnu A., Vishnu J., Manivasagam G., Shankar K.V. Fretting Wear Behavior of Al–Si–Mg–Ni Hypoeutectic Alloy with Varying Solutionizing Time // Silicon. 2023. V. 15. No. 10. P. 4193–4206. https://doi.org/10.1007/s12633-023-02342-5
  9. 9. Sha M., Wu Sh., Wan L., Lü Sh. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al–Si–Cu–Ni Alloy with 1.26 pct Fe // Metall. Mater. Trans. A. 2013. V. 44. No. 13. P. 5642–5652. https://doi.org/10.1007/s11661-013-1937-y
  10. 10. Cai Q., Lordan E., Wang Sh., Liu G., Mendis Ch.L., Chang I.T.H., Ji Sh. Die-cast multicomponent near-eutectic and hypoeutectic Al–Si–Ni–Fe–Mn alloys: Microstructures and mechanical properties // Mater. Sci. Eng. A. 2023. V. 872. P. 144977. https://doi.org/10.1016/j.msea.2023.144977
  11. 11. Belov N.A., Kovalev A.I., Vinnik D.A., Tsydenov K.A. Comparative analysis of phase composition and heat resistance of Al–Si piston alloy and experimental alloy Al4Cu2Mn0,5Ca0,2Zr (wt.%) // Metallurgist. 2024. V. 68. P. 866–876. https://doi.org/10.1007/s11015-024-01793-4
  12. 12. Kaiser M.S. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al–12Si–1Mg–1Cu Piston Alloy // J. Inst. Eng. Ser. D. 2018. V. 99. No. 1. P. 109–114. https://doi.org/10.1007/s40033-017-0140-5
  13. 13. Lin G., Li K., Feng D., Feng Y.-P., Song W.Y., Xiao M.-Q. Effects of La–Ce addition on microstructure and mechanical properties of Al–18Si–4Cu–0.5Mg alloy // Trans. Nonferrous Met. Soc. China. 2019. V. 29. No. 8. P. 1592–1600. https://doi.org/10.1016/S1003-6326 (19)65066-1
  14. 14. Ahmad R., Asmael M., Shahizan N.R., Gandouz S. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition // Int. J. Miner. Metall. Mater. 2017. V. 24. No. 1. P. 91–101. https://doi.org/10.1007/s12613-017-1382-9
  15. 15. Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative analysis of structure evolution and thermal stability of commercial AA2219 and model Al–2 wt%Mn–2 wt%Cu cold rolled alloys // J. Alloys Compd. 2021. V. 864. P. 158823. https://doi.org/10.1016/j.jallcom.2021.158823
  16. 16. Belov N., Korotkova N., Akopyan T., Tsydenov K. Simultaneous Increase of Electrical Conductivity and Hardness of Al–1.5 wt.% Mn Alloy by Addition of 1.5 wt.% Cu and 0.5 wt.% Zr // Metals (Basel). 2019. V. 9. No. 12. P. 1246. https://doi.org/10.3390/met9121246
  17. 17. Белов Н.А., Шуркин П.К., Короткова Н.О., Черкасов С.О. Влияние термообработки на структуру и термостойкость холоднокатаных листов сплавов системы Al–Cu–Mn с разным соотношением меди и марганца // Цветные металлы. 2021. № 9. C. 80–86. https://doi.org/10.17580/tsm.2021.09.09
  18. 18. Belov N.A., Korotkova N.O., Cherkasov S.O., Yakovleva A.O. Effect of iron and silicon concentrations on the phase composition and microstructure of wrought alloy Al–2 wt.% Mn–2 wt.% Cu // Phys. Met. Metal. 2021. V. 122. No. 11. P. 1095–1102.
  19. 19. Dar S.M., Liao H. Creep behavior of heat resistant Al–Cu–Mn alloys strengthened by fine (θ′) and coarse (Al₂₀Cu₂Mn₃) second phase particles // Mater. Sci. Eng. A. 2019. V. 763. P. 138062. https://doi.org/10.1016/j.msea.2019.138062
  20. 20. Belov N.A., Alabin A.N. Energy efficient technology for Al–Cu–Mn–Zr sheet alloys // Mater. Sci. Forum. 2013. V. 765. P. 13–17.
  21. 21. Dai H., Wang L., Dong B., Miao J., Lin S., Chen H. Microstructure and high-temperature mechanical properties of new-type heat-resisting aluminum alloy Al6.5Cu2Ni0.5Zr0.3Ti0.25V under the T7 condition // Mater. Lett. 2023. V. 332. P. 133503. https://doi.org/10.1016/j.matlet.2022.133503
  22. 22. Белов Н.А., Акопян Т.К., Наумова Е.А. Эвтектические сплавы на основе алюминия: новые системы легирования. М.: Руда и металлы, 2016. 256 c. ISBN: 978-5-98191-083-8
  23. 23. Ding R., Deng J., Liu X., Wu Y., Geng Zh., Li D., Zhang T., Chen Ch., Zhou K. Enhanced mechanical properties and thermal stability in additively manufactured Al–Ni alloy by Sc addition // J. Alloys Compd. 2023. V. 934. P. 167894. https://doi.org/10.1016/j.jallcom.2022.167894
  24. 24. Mondolfo L.F. Aluminum Alloys: Structure and Properties. London: Butterworths, 1976.
  25. 25. Белов Н.А. Фазовый состав промышленных и перспективных алюминиевых сплавов. М.: МИСиС, 2010. 511 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library