RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

THE USAGE OF THE PERMANENT MAGNET ASSEMBLIES FOR SEDIMENTATION OF DISPERSED PARTICLES IN AQUEOUS MEDIA

PII
S3034621525080035-1
DOI
10.7868/S3034621525080035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 8
Pages
865-872
Abstract
The magnetic separation technology is used in innovative water purification methods for pollutant removal from aqueous media. The efficiency of the magnetic separation depends on the characteristics of the non-uniform magnetic fields generated by magnetic systems, the properties of the aqueous medium, and the magnetic particles. The influence of gradient magnetic fields generated by permanent magnet assemblies on sedimentation of FeO–SiO nanoparticles in aqueous solutions with various viscosities was studied. Numerical modeling was used to calculate the B and |B·dB/dz| values under the surfaces of a permanent magnet, radial and plane-parallel assemblies made of SmCo permanent magnets, and soft magnetic steel. It was shown the areas of high values of |B·dB/dz| near the surface of the magnetic systems are produced by the assemblies M1 and M2 due to their complex geometries. The magnetic sedimentation efficiency (MSE) of nanoparticles in magnetic field gradients generated by magnetic systems was studied. The MSE in aqueous solution with a viscosity of 0.89–3.07 mPa·s after exposure time during 30 minutes in the magnetic field of the radial assembly is more than 50%. To achieve the MSE more than 50% at using a plane-parallel assembly, it is required 1 and 5 hours exposure time for aqueous solutions with a viscosity of 0.89 and 3.07 mPa·s, respectively. The MSE of nanoparticles are higher at using of the assemblies than the permanent magnet. In the areas of high values of |B·dB/dz| near the surface of the assemblies the particles velocities are increased, which accelerate the settling of magnetic nanoparticles.
Keywords
наночастицы магнитная седиментация
Date of publication
22.02.2026
Year of publication
2026
Number of purchasers
0
Views
35

References

  1. 1. Ku J., Wang K., Wang Q., Lei Zh. Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment // Separations. 2024. V. 11(5). P. 130.
  2. 2. He J., Huang M., Wang D., Zhang Zh., Li G. Magnetic separation techniques in sample preparation for biological analysis: A review // J. Pharmaceutical and Biomedical Analysis. 2014. V. 101. P. 84–101.
  3. 3. Iranmanesh M., Hulliger J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry // Chem. Soc. Rev. 2017. V. 46. P. 5925–5934.
  4. 4. Медведева И.В., Медведева О.М., Студенок А.Г., Студенок Г.А., Цейтлин Е.М. Новые композитные материалы и процессы для химических, физико-химических и биохимических технологий водоочистки // Изв. вузов. Серия: Химия и химическая технология. 2023. Т. 66 (1). P. 6–27.
  5. 5. Giakisikli G., Anthemidis A.N. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review // Analytica Chimica Acta. 2013. V. 789. P. 1–16.
  6. 6. Luo L., Nguyen A.V. A review of principles and applications of magnetic flocculation to separate ultrafine magnetic particles // Sep. Pur. Tech. 2017. V. 172. P. 85–99.
  7. 7. Zhakov S.V. Generation of maximum magnetic fields using permanent magnets // Phys. Met. Metal. 2003. V. 96 (6). P. 562–567.
  8. 8. Ditsch A., Lindenmann S., Laibinis P.E., Wang D.I.C., Hatton T.A. High-gradient magnetic separation of magnetic nanoclusters // Ind. Eng. Chem. Res. 2005. V. 44. P. 6824–6836.
  9. 9. Rhein F., Scholl F., Nirschl H. Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions: microplastics // Chem. Eng. Sci. 2019. V. 207. P. 278–1287.
  10. 10. Ishiwata T., Miura O., Hosomi K., Shimizu K. Removal and recovery of phosphorus in wastewater bysuperconducting high gradient magnetic separation with ferromagnetic adsorbent // Physica C. 2010. V. 470. P. 1818–1821.
  11. 11. Mizuno N., Mishima F., Akiyama Y., Okada H., Hirota N., Matsuura H., Maeda T., Shigemoto N., Nishijima S. Removal of iron oxide with superconducting magnet high gradient magnetic separation from feed-water in thermal plant // IEEE Trans. Appl. Supercond. 2015. V. 25 (3). P. 3700804.
  12. 12. Svoboda J. Magnetic techniques for the treatment of materials. Springer Sci. Dordrecht, 2004. 642 p.
  13. 13. Leong S.S., Ahmad Z., Lim J.K. Magnetophoresis of superparamagnetic nanoparticle at low field gradient: Hydrodynamic effect // Soft Matter. 2015. V. 11. P. 7697.
  14. 14. Faraudo J., Andreu J.S., Calero C., Camacho J. Predicting the Self-Assembly of Superparamagnetic Colloids under Magnetic Fields // Adv. Funct. Mater. 2016. V. 26 (22). P. 3837−3858.
  15. 15. Bakhteeva Iu.A., Medvedeva I.V., Filinkova M.S., Byzov I.V., Zhakov S.V., Uimin M.A., Yermakov A.E. Magnetic sedimentation of nonmagnetic TiO2 nanoparticles in water by heteroaggregation with Fe-based nanoparticles // Sep. Pur. Technol. 2019. V. 218. P. 156–163.
  16. 16. Surette M.C., Mitrano D.M., Rogers K.R. Extraction and concentration of nanoplastic particles from aqueous suspensions using functionalized magnetic nanoparticles and a magnetic flow cell // Microplast. Nanoplast. 2023. V. 3(2). P. 1–12.
  17. 17. Bakhteeva Yu.A., Medvedeva I.V., Filinkova M.S., Byzov I.V., Minin A.S., Zhakov S.V., Uimin M.A., Patrakov E.I., Novikov S.I., Suntsov A.Yu., Demin A.M. Removal of microplastics from water by using magnetic sedimentation // Int. J. Environ. Sci. Technol. 2023. V. 20. P. 11837–11850.
  18. 18. Fatima H., Kim K.S. Magnetic nanoparticles for bioseparation // Korean J. Chem. Eng. 2017. V. 34. P. 589–599.
  19. 19. Bakhteeva Yu.A., Medvedeva I.V., Uimin M.A., Byzov I.V., Zhakov S.V., Yermakov A.E., Shchegoleva N.N. Magnetic sedimentation and aggregation of Fe3O4@SiO2 nanoparticles in water medium // Sep. Pur. Technol. 2016. V. 159. P. 35–42.
  20. 20. Segur J.B., Oberstar H.E. Viscosity of glycerol and its aqueous solutions // Industrial and engineering chemistry. 1951. V. 43(9) P. 2117–2120.
  21. 21. Medvedeva I.V., Zhakov S.V., Revvo A.V., Byzov I.V., Bakhteeva Yu.A., Uimin M.A., Yermakov A.E., Mysik A.A. Application of NMR relaxometry for determining the concentration of nanopowder magnetite in aqueous media // Physics of Metals and Metallography. 2014. V. 115. P. 744–748.
  22. 22. Tan Y.W., Gunn P.F.E., Ng W.M., Leong S.S., Toh P.Y., Camacho J., Faraudo J., Lim J.K. Influences of fluid and system design parameters on hydrodynamically driven low gradient magnetic separation of magnetic nanoparticles // Chem. Eng. and Processing – Process Intensification. 2024. V. 199. P. 109768.
  23. 23. Brown K.A., Vassiliou Ch.C., Issadore D., Berezovsky J., Cima M.J., Westervelt R.M. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation // JMMM. 2010. V. 322(20). P. 3122–3126.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library