ОФНФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

МАГНИТНЫЙ ИМПЕДАНС И ФАЗОВЫЕ ПЕРЕХОДЫ

Код статьи
S3034621525080055-1
DOI
10.7868/S3034621525080055
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 126 / Номер выпуска 8
Страницы
879-884
Аннотация
Теоретически рассмотрен магнитный импеданс проволок в низкочастотном режиме. Анализируется окрестность температуры Кюри и спин-ориентационные переходы. Показано, что нелинейные эффекты намного более чувствительны к изменению магнитного поля, чем линейный импеданс.
Ключевые слова
магнитный импеданс фазовые переходы
Дата публикации
22.02.2026
Год выхода
2026
Всего подписок
0
Всего просмотров
37

Библиография

  1. 1. Kurlyandskaya G.V., Buznikov N.A., Svalov A.V. Giant magnetoimpedance: 30 years since rediscovery and next steps // Phys. Met. Metal. 2024. V. 125. Suppl. 1. P. S33–S61.
  2. 2. Курляндская Г.В., Бебенин Н.Г., Васьковский В.О. Гигантский магнитный импеданс проволок c тонким магнитным покрытием // ФММ. 2011. Т. 111. № 2. С. 136–158.
  3. 3. Panina L.V., Mohri K., Bushida K., Noda M. Giant magneto-impedance and magneto-inductive effects in amorphous alloys // J. Appl. Phys. 1994. V. 76. P. 6198–6203.
  4. 4. Beach R.S., Berkowitz A.E. Giant magnetic field dependent impedance of amorphous FeCoSiB wire // Appl. Phys. Lett. 1994. V. 64. P. 3652–3654.
  5. 5. Beach R.S., Smith N., Platt C.L., Jeffers F., Berkowitz A.E. Magneto-impedance effect in NiFe plated wire // Appl. Phys. Lett. 1996. V. 68. P. 2753–2755.
  6. 6. García D., Kurlyandskaya G.V., Vázquez M., Toth F.I., Varga L.K. Influence of field annealing on the hysteretic behavior of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells // J. Magn. Magn. Mat. 1999. V. 203. P. 208–210.
  7. 7. Usov A., Antonov A., Granovsky A. Theory of giant magneto-impedance effect in composite amorphous wire // J. Magn. Magn, Mat. 1997. V. 171. P. 64–68.
  8. 8. Gromov A., Korenivski V. Electromagnetic analysis of layered magnetic/conductor structures // J. Phys. D: Appl. Phys. 2000. V. 33. P. 773–779.
  9. 9. Chen G., Yang X.L., Zeng L., Yang J.X., Gong F.F., Yang D.P., Wang Z.C. High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy // J. Appl. Phys. 2000. V. 87. P. 5263–5265.
  10. 10. Моисеев А.А., Деревянко М.С., Букреев Д.А., Захаров Г.В., Семиров А.В. Температурные зависимости высокочастотного электрического импеданса аморфных проводов на основе кобальта с неоднородной магнитной структурой // ФММ. 2022. Т. 123. № 9. С. 935–939.
  11. 11. Yelon A., Britel M., Menard D., Ciureanu. Origin of linear and nonlinear giant magnetoimpedance // Physica A. 1997. V. 241. P. 439–443.
  12. 12. Jamilpanah L., Chiolerio A., Crepaldi M., Adamatzky A., Mohseni M. Proposing magnetoimpedance effect for neuromorphic computing // Sci. Reports. 2023. V. 13. P. 8635.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека