RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

MAGNETIC IMPEDANCE AND PHASE TRANSITIONS

PII
S3034621525080055-1
DOI
10.7868/S3034621525080055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 8
Pages
879-884
Abstract
The magnetic impedance of wires in the low-frequency regime is theoretically considered. The vicinity of the Curie temperature and spin-orientation transitions are analyzed. It is shown that nonlinear effects are much more sensitive to changes in the magnetic field than linear impedance.
Keywords
магнитный импеданс фазовые переходы
Date of publication
22.02.2026
Year of publication
2026
Number of purchasers
0
Views
39

References

  1. 1. Kurlyandskaya G.V., Buznikov N.A., Svalov A.V. Giant magnetoimpedance: 30 years since rediscovery and next steps // Phys. Met. Metal. 2024. V. 125. Suppl. 1. P. S33–S61.
  2. 2. Курляндская Г.В., Бебенин Н.Г., Васьковский В.О. Гигантский магнитный импеданс проволок c тонким магнитным покрытием // ФММ. 2011. Т. 111. № 2. С. 136–158.
  3. 3. Panina L.V., Mohri K., Bushida K., Noda M. Giant magneto-impedance and magneto-inductive effects in amorphous alloys // J. Appl. Phys. 1994. V. 76. P. 6198–6203.
  4. 4. Beach R.S., Berkowitz A.E. Giant magnetic field dependent impedance of amorphous FeCoSiB wire // Appl. Phys. Lett. 1994. V. 64. P. 3652–3654.
  5. 5. Beach R.S., Smith N., Platt C.L., Jeffers F., Berkowitz A.E. Magneto-impedance effect in NiFe plated wire // Appl. Phys. Lett. 1996. V. 68. P. 2753–2755.
  6. 6. García D., Kurlyandskaya G.V., Vázquez M., Toth F.I., Varga L.K. Influence of field annealing on the hysteretic behavior of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells // J. Magn. Magn. Mat. 1999. V. 203. P. 208–210.
  7. 7. Usov A., Antonov A., Granovsky A. Theory of giant magneto-impedance effect in composite amorphous wire // J. Magn. Magn, Mat. 1997. V. 171. P. 64–68.
  8. 8. Gromov A., Korenivski V. Electromagnetic analysis of layered magnetic/conductor structures // J. Phys. D: Appl. Phys. 2000. V. 33. P. 773–779.
  9. 9. Chen G., Yang X.L., Zeng L., Yang J.X., Gong F.F., Yang D.P., Wang Z.C. High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy // J. Appl. Phys. 2000. V. 87. P. 5263–5265.
  10. 10. Моисеев А.А., Деревянко М.С., Букреев Д.А., Захаров Г.В., Семиров А.В. Температурные зависимости высокочастотного электрического импеданса аморфных проводов на основе кобальта с неоднородной магнитной структурой // ФММ. 2022. Т. 123. № 9. С. 935–939.
  11. 11. Yelon A., Britel M., Menard D., Ciureanu. Origin of linear and nonlinear giant magnetoimpedance // Physica A. 1997. V. 241. P. 439–443.
  12. 12. Jamilpanah L., Chiolerio A., Crepaldi M., Adamatzky A., Mohseni M. Proposing magnetoimpedance effect for neuromorphic computing // Sci. Reports. 2023. V. 13. P. 8635.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library