ОФНФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

ВЫСОКОТЕМПЕРАТУРНАЯ СВЕРХЭЛАСТИЧНОСТЬ В [001]-МОНОКРИСТАЛЛАХ NiMnGaFe ПРИ ДЕФОРМАЦИИ СЖАТИЕМ

Код статьи
S3034621525080115-1
DOI
10.7868/S3034621525080115
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 126 / Номер выпуска 8
Страницы
936-942
Аннотация
Представлены результаты исследования высокотемпературной сверхэластичности, температурной зависимости критических напряжений образования мартенсита, предела текучести мартенсита и аустенита в [001]-монокристаллах NiMnGaFe при деформации сжатием. С ростом температуры испытания после роста и после закалки в монокристаллах происходит уменьшение предела текучести мартенсита на 640–700 МПа и увеличение на порядок коэффициента деформационного упрочнения. При высоких температурах это приводит к достижению предела текучести мартенсита, развитию пластической деформации в процессе мартенситного превращения и окончанию интервала сверхэластичности. Отжиг при 1273 К, 4 ч с закалкой приводит к увеличению предела текучести мартенсита на 250–350 МПа во всем температурном интервале испытаний, по сравнению с монокристаллами после роста, что вызывает расширение интервала сверхэластичности от ΔT = 115 K (308–423 К) до ΔT = 155 K (318–473 К).
Ключевые слова
сплав Гейслера сверхэластичность NiMnGa—Fe высокотемпературные сплавы монокристаллы мартенситное превращение предел текучести мартенсита
Дата публикации
22.02.2026
Год выхода
2026
Всего подписок
0
Всего просмотров
45

Библиография

  1. 1. Ma J., Karaman. I., Noebe R.D. High temperature shape memory alloys // Intern. Mater. Rev. 2010. V. 55. No. 5. P. 257–315.
  2. 2. Mohd Jani J., Leary M., Subic A., Gibson M.A. A review of shape memory alloy research, applications and opportunities // Mater. Design. 2014. V. 56. P. 1078–1113.
  3. 3. Gerstein G., L’vov V.A., Kosogor A., Maier H.J. Internal pressure as a key thermodynamic factor to obtain high-temperature superelasticity of shape memory alloys // Mater. Letters. 2018. V. 210. P. 252–254.
  4. 4. Zhang J., Chen T., Li W., Bednarcik J., Dippel A.-C. High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling // Mater. Design. 2020. V. 193. P. 108875.
  5. 5. Liu Y., Ma Z., Li S., Yan P., Hou Q., Sun J. The Effect of Fe Content on the Shape Memory Effect of Ni-Mn-Ga-Fe Shape Memory Alloy Microwires after Ordering Heat Treatment // Metals. 2024. V. 14. P. 1167.
  6. 6. You Y., Wang J., Su X., Guo X., Moumni Z., Zhang W. Effect of plasticity on superelasticity and hysteretic dissipation of NiTi shape memory alloy // Mater. Today Comm. 2020. V. 24. P. 101137.
  7. 7. Zhu Y., Liu J., Li X., Li J., Zhang L., Li B. Improving the temperature stability of superelastic stress of Cu-Al-Mn shape memory alloy in a wide temperature rang by torsion pre-deformation // Mater. Letters. 2023. V. 341. P. 134214.
  8. 8. Oliveira J.P., Miranda R.M., Schell N., Braz Fernandes F.M. High strain and long duration cycling behavior of laser welded NiTi sheets // Intern. J. Fatigue. 2016. V. 83. P. 195–200.
  9. 9. Tolea F., Sofronie M., Crisan A.D., Popescu B., Tolea M., Valeanu M. Effect of thermal treatments in Ni–Fe–Ga with Co substitutions and Ni–Mn–Ga melt spun ribbons // Procedia Structural Integrity. 2016. V. 2. P. 1473–1480.
  10. 10. Sozinov A., Musiienko D., Saren A., Veřtát P., Straka L., Heczko O., Zelený M., Chulist R., Ullakko K. Highly mobile twin boundaries in seven-layer modulated Ni–Mn–Ga–Fe martensite // Scripta Mater. 2020. V. 178. P. 62–66.
  11. 11. Xin Y., Chai L. Microstructure and martensitic transformation behavior of Ni56-xMn25FexGa19 shape memory alloys // Rare Metals. 2013. V. 33. No. 1. P. 41–46.
  12. 12. Ma Y., Xu L., Li Y., Jiang C., Xu H., Lee Y.-K. Martensitic transformation, ductility, and shape-memory effect of polycrystalline Ni56Mn25–xFexGa19 alloys // Zeitschrift Für Metallkunde. 2005. V. 96. No. 8. P. 843–846.
  13. 13. Wang H.B., Chen F., Gao Z.Y., Cai W., Zhao L.C. Effect of Fe content on fracture behavior of Ni–Mn–Fe–Ga ferromagnetic shape memory alloys // Mater. Sci. Eng. A. 2006. V. 438–440. P. 990–993.
  14. 14. Liu Y., Zhang X., Liu J., Xing D., Shen H., Chen D., Sun J. Superelasticity in Polycrystalline Ni-Mn-Ga-Fe Microwires Fabricated by Melt-extraction // Mater. Research. 2015. V. 18. No. 1. P. 61–65.
  15. 15. Bozer A., Yaşar E. Thermal, Mechanic, and Magnetic Properties of Ni54Mn18Ga20Fe8 Magnetic Shape Memory Alloy // The International J. Eng. Sci. 2017. V. 6. No. 9. P. 68–73.
  16. 16. Yang S.Y., Liu Y., Wang C.P., Shi Z., Liu X.J. The mechanism clarification of Ni–Mn–Fe–Ga alloys with excellent and stable functional properties // J. Alloys Compounds. 2013. V. 560. P. 84–91.
  17. 17. Liu Y., Lang Z., Shen H., Liu J., Sun J. Martensitic Transition and Superelasticity of Ordered Heat Treatment Ni–Mn–Ga–Fe Microwires // Metals. 2022. V. 12. P. 1546.
  18. 18. Тимофеева Е.Е., Панченко Е.Ю., Дмитриенко М.C., Янушоните Э.И., Фаткуллин И.Д., Чумляков Ю.И. Разработка сплавов NiMnGaFe с высокотемпературной сверхэластичностью // Письма в ЖЭТФ. 2025. Т. 51. № 11. С. 46–51.
  19. 19. Wang W.H., Wu G.H., Chen J.L., Yu C.H., Gao S.X., Zhan W.S., Wang Z., Gao Z.Y., Zheng Y.F., Zhao L.C. Stress-free two-way thermoelastic shape memory and field-enhanced strain in Ni52Mn24Ga24 single crystals // Appl. Phys. Letters. 2000. V. 77. No. 20. P. 3245–3247.
  20. 20. Kreissl M., Neumann K.-U., Stephens T., Ziebeck K.R.A. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa // J. Phys.: Condensed Matter. 2003. V. 15. No. 22. P. 3831–3839.
  21. 21. Umetsu R.Y., Ando H., Yamashita S., Endo K., Nishihara H., Kainuma R., Kanomata T., Ziebeck K.R.A. Phase diagram and magnetic moment of Ni50+xMn27–xGa23 ferromagnetic shape memory alloys // J. Alloys Compounds. 2013. V. 579. P. 521–528.
  22. 22. Pozo Lopez G., Condo A.M., Giordano R.N., Urreta S.E., Haberkorn N., Winkler E., Fabietti L.M. Microstructure and magnetic properties of as-cast Ni2MnGa alloys processed by twin roller mlt spinning // J. Magn. Magn. Mater. 2013. V. 335. P. 75–85.
  23. 23. Santamarta R., Cesari E., Font J., Muntasell J., Pons J., Dutkiewicz J. Effect of atomic order on the martensitic transformation of Ni–Fe–Ga alloys // Scripta Mater. 2006. V. 54. P. 1985–1989.
  24. 24. Xiao S., Valadkhani A., Rommel S., Canfield P.C., Aindow M., Valentí R., Lee S.-W. Tension-compression asymmetry in superelasticity of SrNi2P2 single crystals and the influence of low temperatures // Acta Mater. 2024. V. 274. P. 119989.
  25. 25. Timofeeva E.E., Panchenko E.Y., Chumlyakov Y.I., Maier H.J., Gerstein G. Peculiarities of High-Temperature Superelasticity in Ni–Fe–Ga Single Crystals in Compression // Techn. Phys. Letters. 2017. V. 43. No. 6. P. 86–94.
  26. 26. Chumlyakov Yu.I., Kireeva I.V., Panchenko E.Yu., Timofeeva E.E., Pobedennaya Z.V., Chusov S.V., Karaman I., Maier H., Cesari E., Kirillov V.A. High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals // Russian Phys. Journal. 2008. V. 51. No. 10. P. 1016–1036.
  27. 27. Timofeeva E.E., Panchenko E.Y., Zherdeva M.V., Tokhmetova A.B., Surikov N.Y., Chumlyakov Y.I., Karaman I. The Effect of Thermal Treatment on Microstructure and Thermal-Induced Martensitic Transformations in Ni44Fe19Ga27Co10 Single Crystals // Metals. 2022. V. 12. P. 1960.
  28. 28. Pons J., Chernenko V.A., Santamarta R., Cesari E. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys // Acta Mater. 2000. V. 48. P. 3027–3038.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека