RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

CHANGES IN THE ELECTRONIC AND MAGNETIC PROPERTIES OF NONSTOICHIOMETRIC FERRITE DOPED WITH VANADIUM LaSrFeVO (0 ≤ y ≤ 0.15; 0.05 ≤ z ≤ 0.35)

PII
S3034621525090085-1
DOI
10.7868/S3034621525090085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 9
Pages
1031-1037
Abstract
The changes in the electronic spectrum and spin magnetic moment on the 3 shell of iron and vanadium ions in cubic solid solutions LaSrFeVO, where 0 ≤ y ≤ 0.15, 0.05 < z ≤ 0.35 depending on the composition, were studied using the coherent potential method. The calculated concentration dependencies of the electronic and magnetic properties of non-stoichiometric ferrites LaSrFeO and LaSrFeVO correlate well with the experimental data. It was shown that the LaSrFeVO phases with Fe/Fe, Fe/Fe, V/V and V/V redox transitions in the energy interval Δ ≈ 1.15 eV are of interest for energy storage devices.
Keywords
нестехиометрические перовскитоподобные ферриты электронные и магнитные свойства метод когерентного потенциала
Date of publication
26.10.2025
Year of publication
2025
Number of purchasers
0
Views
55

References

  1. 1. Kozhevnikov V.L., Leonidov I.A., Patrakeev M.V., Markov A.A., Blinovskov Y.N. Evaluation of La0.5Sr0.5FeO3-δ membrane reactors for partial oxidation of methane // J. Solid State Electrochem. 2009. V. 13. P. 391–395.
  2. 2. Pan B., Miao H., Liu F., Wu M., Yuan J. Optimizing La1-xSrxFeO3-δ electrodes for symmetrical reversible solid oxide cells // Int. J. Hydrog. Energy. 2023. V. 48. P. 11045–11057.
  3. 3. Tang Y., Chiabrera F., Morata A., Cavallaro A., Liedke M.O., Avireddy H., Maller M., Butterling M., Wagner A., Stchakovsky M. Ion intercalation in lanthanum strontium ferrite for aqueous electrochemical energy storage devices // ACS Appl. Materials Interfaces. 2022. V. 14. P. 18486–18497.
  4. 4. Itoh T., Idemoto Y., Imai H. Local structure change around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ as revealed by in-sity X–ray absorption spectroscopy and first-principles calculation // J. Solid Stae. Chem. 2018. V. 253. P. 702–711.
  5. 5. Зайнуллина В.М., Коротин М.А., Владимирова Е.В., Тютюнник А.П., Коряков А.Д., Переверзев Д.И. Электронные и магнитные свойства сильно нестехиометрических твердых растворов Sr1-xLax-yFe1-zCozO3-δ для электрода псевдоконденсатора // Письма в ЖЭТФ. 2025. Т. 122. № 5. C. 290–298.
  6. 6. Lebon A., Adler P., Bernhard C., Boris A.V., Pimenov A.V., Maljuk A., Lin C.T., Ulrich C., and Keimer B. Magnetism, charge order, and giant magnetoresistance in SrFeO3-δ single crystals // Phys. Rev. Lett. 2004. V. 92. No. 3. P. 037202-4.
  7. 7. Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Poeppelmeier K.R. p-Type electron transport in La1-xSrxFeO3-δ at high temperatures // J. Solid State Chem. 2005. V. 178. P. 921–927.
  8. 8. Pidburtnyi M., Zanca B., Coppex C., Jimenez-Villegas S., Thangadurai V. A Review on Perovskite-Type LaFeO3 Based Electrodes for CO2 Reduction in Solid Oxide Electrolysis Cell: Current Understanding of Structure-Functional Property Relationships // Chem. Mater. 2021. V. 33. P. 4249–4268.
  9. 9. Ivanov A.I., Nikitin S.S., Dyakina M.S., Tsipis E.V., Patrakeev M.V., Agarkov D.A., Zverkova I.I., Zhigachev A.O., Kedrov V.V., Kharton V.V. Oxygen Nonstoichiometry, Electrical Conductivity, Chemical Expansion and Electrod Properties of Perovskite-Type SrFe0.9V0.1O3-δ // Materials. 2025. V. 18. P. 493–22.
  10. 10. Zhou Y., Zhou Zh., Song Y., Zhang X., Guan F., Lv H., Liu Q., Miao S., Wang G., Bao X. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell // Nano Energy. 2018. V. 50. P. 43–51.
  11. 11. Li Z., Zhang W., Yuan Ch., Su Y. Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties // RSC Adv. 2017. V. 7. P. 12931–12937.
  12. 12. Ahangari M., Mostafaei J., Sayyah A., Mahmoudi E., Asghari E., Coruh A., Delibas N., Niaei A. Investigation of structural and electrochemical properties of SrFexCo1-xO3-δ perovskite oxides as a supercapacitor electrode material // J. Energy Storage. 2023. V. 63. P. 107034–10.
  13. 13. Сараванакумар Б., Пурушотаман К.К., Мумалидхаран Г. V2O5 с чешуйчатой структурой: морфология, схема образования и свойства суперконденсатора // Электрохимия. 2019. Т. 55. № 2. С. 171–181.
  14. 14. Anas M., Jain A., Gupta M., Sagdeo A., Yusuf S.M., Maitra T., Malik V.K. Structural and magnetic properties of LaVO3 — Absence of anomalous diamagnetism // Ceramics International. 2023. V. 49. P. 9672–9680.
  15. 15. Saha R., Samantaray K.S., Maneesha P., Baral S.Ch., Sarangi S.N., Urcude R., Ghosh B., Mittal R., Gupta M.K., Mekki A., Harrabi Kh., Sen S. Effect of V5+/V4+ substitution on structural and magnetic orderings of SrFeO3-δ // Ceramics International. 2025. V. 51. P. 39855–39865.
  16. 16. Коротин М.А., Скориков Н.А., Зайнуллина В.М., Курмаев Э.З., Лукоянов А.В., Анисимов В.И. Электронная структура нестехиометрических соединений в приближении когерентного потенциала // Письма в ЖЭТФ. 2011. V. 94. № 11. C. 884–889.
  17. 17. Korotin M.A., Skorikov N.A., Anokhin A.O. Electronic structure and magnetic properties of low-dimensional nonstoichiometric rutile // Physica B. 2017. V. 526. P. 14–20.
  18. 18. Andersen O.K., Jepsen O. Explicit, first-principles tight-binding theory // Phys. Rev. Lett. 1984. V. 53. P. 2571–2574.
  19. 19. Anisimov V.I., Kondakov D.E., Kozhevnikov A.V., Nekrasov I.A., Pchelkina Z.V., Allen J.W., Mo S.-K., Kim H.-D., Metcalf P., Suga S., Sekiyama A., Keller G., Leonov I., Ren X., Vollhardt D. Full orbital calculation scheme for materials with strongly correlated electrons // Phys. Rev. B. 2005. V. 71. P. 125119–16.
  20. 20. Zhou X.-D., Cai Q., Yang J., Kim M., Yelon W.B., James W.J., Shin Y.-W., Scarfino B.J., Anderson H.U. Coupled electrical and magnetic properties in (La,Sr)FeO3-δ // J. Appl. Phys. 2005. V. 97. P. 10C314–3.
  21. 21. Korotin M.A., Pchelkina Z.V., Skorikov N.A., Kurmaev E.Z., Anisimov V.I. The coherent potential approximation for strongly correlated systems: electronic structure and magnetic properties of NiO–ZnO solid solutions // J. Phys.: Condens. Matter. 2014. V. 26. P. 115501–6.
  22. 22. Zainullina V.M., Korotin M.A., Kozhevnikov V.L. Electronic structure of SrFe1-x(Mn,Co)xO3-δ: A CPA case study // J. Alloy. Compd. 2024. V. 971. P. 172660–8.
  23. 23. Коротин М.А., Скориков Н.А., Анисимов В.И. Изменение орбитальной симметрии локализованного 3d1-электрона иона V4+ при переходе металл-изолятор в VO2 // ФММ. 2002. Т. 94.№1. С. 22–29.
  24. 24. Wadati H., Kobayashi D., Kumigashira H., Okazaki K., Mizokawa T., Fujimori A., Horiba K., Oshima M., Hamada N., Lippmaa M., Kawasaki M., and Koinuma H. Hole-doping-induced changes in the electronic structure of La1-xSrxFeO3: Soft x-ray photoemission and absorption study of epitaxial thin films // Phys. Rev. B. 2005. V. 71. P. 035108–7.
  25. 25. Scafetta M.D. A thesis. Drexel University, PA. 2015.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library