- Код статьи
- S3034621525090095-1
- DOI
- 10.7868/S3034621525090095
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 126 / Номер выпуска 9
- Страницы
- 1038-1048
- Аннотация
- В данной работе, используя точное решение для модели Изинга на декорированной квадратной решетке с произвольным числом декорирующих спинов, обнаружена возможность описания явления магнитной реентерабельности. Показано, что магнитная реентерабельность возникает в режиме конкурирующих обменных взаимодействий в таких спиновых системах. Также обнаружено, что в изучаемой системе возможны только один, три или пять магнитных фазовых переходов.
- Ключевые слова
- модель Изинга декорированная квадратная решетка точное аналитическое решение магнитная реентерабельность
- Дата публикации
- 28.10.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 39
Библиография
- 1. Senoussi S. Reentrant magnetism: New aspects // Phys. Rev. B. 1985. V. 31. No. 9. P. 6086–6088.
- 2. Binder K., Young A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions // Rev. Mod. Phys. 1986. V. 58. No. 4. P. 801–976.
- 3. Kakehashi Y. Magnetism in amorphous transition metals // Phys. Rev. B. 1991. V. 43. No. 13. P. 10820–10831.
- 4. Kakehashi Y. Magnetism in amorphous transition metals. II // Phys. Rev. B. 1993. V. 47. No. 6. P. 3185–3195.
- 5. Spin glasses: An experimental introduction / Ed. J.A. Mydosh. London: CRC Press, 1993. xi, 280 p.
- 6. Calderon M.J., Das Sarma S. Reentrant ferromagnetism in a class of diluted magnetic semiconductors // Phys. Rev. B. 2007. V. 75. No. 23. P. 235203.
- 7. Sanyal P. Theory of the magnetism in La2NiMnO6 // Phys. Rev. B. 2017. V. 96. No. 21. P. 214407.
- 8. Naveen K., Reehuis M., Adler P., Pattison Ph., Hoser A., Mandal T.K., Arjun U., Mukharjee P.K., Nath R., Felser C., Paul A.K. Reentrant magnetism at the borderline between long-range antiferromagnetic order and spin-glass behavior in the B-site disordered perovskite system Ca2−xSrxFeRuO6 // Phys. Rev. B. 2018. V. 98. No. 22. P. 224423.
- 9. Samanta T., Bhobe P.A., Das A., Kumar A., Nigam A.K. Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy // Phys. Rev. B. 2018. V. 97. No. 18. P. 184421.
- 10. Yahne D.R., Pereira D., Jaubert L.D.C., Sanjeewa L.D., Powell M., Kolis J.W., Xu G., Enjalran M., Gingras M.J.P., Ross K.A. Understanding reentrance in frustrated magnets: The case of the Er2Sn2O7 pyrochlore // Phys. Rev. Lett. 2021. V. 127. No. 27. P. 277206.
- 11. Chakraborty S., Gupta Sh., Pakhira S., Choudhary R., Biswas A., Mudryk Y., Pecharsky V.K., Johnson D.D., Mazumdar Ch. Ground-state degeneracy and complex magnetism of geometrically frustrated Gd2Ir0.97Si2.97 // Phys. Rev. B. 2022. V. 106. No. 22. P. 224427.
- 12. Tran L.M., Zaleski A.J., Bukowski Z. Reentrant resistivity due to the interplay of superconductivity and magnetism in Eu0.73Ca0.27(Fe0.87Co0.13)2As2 // Phys. Rev. B. 2024. V. 109. No. 1. P. 014509.
- 13. Вакс В.Г., Ларкин А.И., Овчинников Ю.Н. Модель Изинга при взаимодействии с неближайшими соседями // ЖЭТФ. 1965. Т. 49. No. 4. С. 1180–1189.
- 14. Kitatani H., Miyashita S., Suzuki M. Reentrant phase transitions in the two-dimensional Ising model with competing nearest neighbour interactions // Phys. Lett. A. 1985. V. 108. No. 1. P. 45–49.
- 15. Morita T. Reentrant transition of the Ising model on the centred square lattice // J. Phys. A: Math. Gen. 1986. V. 19. No. 9. P. 1701–1708.
- 16. Azaria P., Diep H.T., Giacomini H. Coexistence of order and disorder and reentrance in an exactly solvable model // Phys. Rev. Lett. 1987. V. 59. No. 15. P. 1629–1632.
- 17. Yokota T. Reentrant and successive phase transitions in the Ising model with competing interactions // Phys. Rev. B. 1989. V. 39. No. 1. P. 523–527.
- 18. Diep H.T., Debauche M., Giacomini H. Reentrance and disorder solutions in exactly solvable Ising models // J. Magn. Magn. Mater. 1992. V. 104–107. P. 184–186.
- 19. Thomas C.K., Katzgraber H.G. Simplest model to study reentrance in physical systems // Phys. Rev. E. 2011. V. 84. No. 4. P. 040101.
- 20. De La Espriella N., Madera J.C., Sanchez-Caraballo A. Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system // Physica A. 2018. V. 511. P. 289–301.
- 21. Diep H.T., Giacomini H. Frustration – Exactly solved frustrated models / Frustrated spin systems. Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. P. 1–62.
- 22. Lajko P., d’Auriac J.-Ch.A., Rieger H., Igloi F. Reentrant random quantum Ising antiferromagnet // Phys. Rev. B. 2020. V. 101. No. 2. P. 024203.
- 23. Kaneko R., Douda Y., Goto Sh., Danshita I. Reentrance of the disordered phase in the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields // J. Phys. Soc. Jpn. 2021. V. 90. No. 7. P. 073001.
- 24. Nakano H. Existence of three transition temperatures in decorated triangular and square Ising lattices with anisotropic couplings // Prog. Theor. Phys. 1968. V. 40. No. 2. P. 231–236.
- 25. Fradkin E.H., Eggarter T.P. Ising models with several phase transitions // Phys. Rev. A. 1976. V. 14. No. 1. P. 495–499.
- 26. Jascur M. Exact results for a decorated Ising model // Physica A. 1998. V. 252. No. 1. P. 217–224.
- 27. Strecka J., Rojas O., de Souza S.M. Spin-phonon coupling induced frustration in the exactly solved spin-1/2 Ising model on a decorated planar lattice // Phys. Lett. A. 2012. V. 376. No. 3. P. 197–202.
- 28. Doria F.F., Pereira M.S.S., Lyra M.L. Band-filling driven crossover fromferro to antiferromagnetic order in Ising lattices decorated by quantum dimers // J. Magn. Magn. Mater. 2014. V. 368. P. 98–104.
- 29. Galisova L. Reentrant phenomenon and inverse magnetocaloric effect in a generalized spin-(1/2, s) Fisher’s super-exchange antiferromagnet // J. Phys.: Condens. Matter. 2016. V. 28. No. 47. P. 476005.
- 30. Chen Sh., Wu Y., Lu J., Teng B. Reentrant phenomenon in the decorated Ising model // Phys. Scripta. 2023. V. 98. No. 12. P. 125941.
- 31. Miyazima S., Syozi I. A statistical model of Ising spin with five transition points // Prog. Theor. Phys. 1968. V. 40. No. 1. P. 185–187.
- 32. Miyazima S. Three phase transitions of Ising model // Prog. Theor. Phys. 1968. V. 40. No. 3. P. 462–470.
- 33. Nakano H. Ordering in certain statistical systems of Ising spins // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1121–1132.
- 34. Syozi I. A decorated Ising lattice with three transition temperatures // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1367–1368.
- 35. Boughrara M., Taifi E., Kerouad M. Phase transition and magnetic properties of a decorated Ising film // Ferroelectrics. 2008. V. 372. No. 1. P. 47–53.
- 36. Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition // Phys. Rev. 1944. V. 65. No. 3–4. P. 117–149.
- 37. Kaufman B. Crystal statistics. II. Partition function evaluated by spinor analysis // Phys. Rev. 1949. V. 76. No. 8. P. 1232–1243.
- 38. Kaufman B., Onsager L. Crystal statistics. III. Shortrange order in a binary Ising lattice // Phys. Rev. 1949. V. 76. No. 8. P. 1244–1252.
- 39. Baxter R.J. Exactly solved models in statistical mechanics. London: Academic Press, 1982. xii, 486 p.
- 40. Statistical mechanics / Ed. R.K. Pathria, P.D. Beale. Academic Press. London, 2021. xxx, 738 p.
- 41. Syozi I. Statistics of kagome lattice // Prog. Theor. Phys. 1951. V. 6. No. 3. P. 306–308.
- 42. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part I // Phys. Rev. 1941. V. 60. No. 3. P. 252—262.
- 43. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part II // Phys. Rev. 1941. V. 60. No. 3. P. 263—276.
- 44. Baxter R.J. Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model // J. Stat. Phys. 2011. V. 145. No. 3. P. 518–548.
- 45. Montroll E.W., Potts R.B.,Ward J.C. Correlations and spontaneous magnetization of the two-dimensional Ising model // J. Math. Phys. 1963. V. 4. No. 2. P. 308–322.
- 46. Кассан-Оглы Ф.А., Прошкин А.И., Муртазаев А.К., Мутайламов В.А. Декорированная изинговская квадратная решетка в магнитном поле // ФТТ. 2020. Т. 62. No. 5. С. 683–688.
- 47. Kassan-Ogly F.A., Zarubin A.V. Frustration in the Ising model on a decorated square lattice // Phys. Rev. E. 2025. V. 111. No. 4. P. 044133.
- 48. Toulouse G. Theory of the frustration effect in spin glasses: I // Commun. Phys. 1977. V. 2. No. 4. P. 115–119.
- 49. Vannimenus J., Toulouse G. Theory of the frustration effect: II. Ising spins on a square lattice // J. Phys. C: Solid State Phys. 1977. V. 10. No. 18. P. L537–542.
- 50. Introduction to frustrated magnetism: Materials, experiments, theory / Ed. C. Lacroix, Ph. Mendels, F. Mila. Berlin: Springer, 2011. xxvii, 679 p.
- 51. Frustrated spin systems / Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. xxx, 719 p.
- 52. Kassan-Ogly F.A., Zarubin A.V. Frustrations on decorated planar lattices in Ising model // J. Supercond. Novel Magn. 2022. V. 35. No. 6. P. 1647–1656.