- PII
- S3034621525090095-1
- DOI
- 10.7868/S3034621525090095
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 126 / Issue number 9
- Pages
- 1038-1048
- Abstract
- In this work, based on the exact solution of the Ising model on a decorated square lattice with an arbitrary number of decorating spins, the fundamental possibility of describing the phenomenon of magnetic reentrancy is revealed. It is established that magnetic reentrancy arises in the case of competition between exchange interactions in the considered spin systems. It has been found that in the system under study, only one, three, or five magnetic phase transitions are possible, which is confirmed by a complex magnetic phase diagram. A number of key scenarios for the formation of magnetic reentrancy are presented, illustrating the influence of model parameters on the magnetic behaviour of the system.
- Keywords
- модель Изинга декорированная квадратная решетка точное аналитическое решение магнитная реентерабельность
- Date of publication
- 28.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 41
References
- 1. Senoussi S. Reentrant magnetism: New aspects // Phys. Rev. B. 1985. V. 31. No. 9. P. 6086–6088.
- 2. Binder K., Young A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions // Rev. Mod. Phys. 1986. V. 58. No. 4. P. 801–976.
- 3. Kakehashi Y. Magnetism in amorphous transition metals // Phys. Rev. B. 1991. V. 43. No. 13. P. 10820–10831.
- 4. Kakehashi Y. Magnetism in amorphous transition metals. II // Phys. Rev. B. 1993. V. 47. No. 6. P. 3185–3195.
- 5. Spin glasses: An experimental introduction / Ed. J.A. Mydosh. London: CRC Press, 1993. xi, 280 p.
- 6. Calderon M.J., Das Sarma S. Reentrant ferromagnetism in a class of diluted magnetic semiconductors // Phys. Rev. B. 2007. V. 75. No. 23. P. 235203.
- 7. Sanyal P. Theory of the magnetism in La2NiMnO6 // Phys. Rev. B. 2017. V. 96. No. 21. P. 214407.
- 8. Naveen K., Reehuis M., Adler P., Pattison Ph., Hoser A., Mandal T.K., Arjun U., Mukharjee P.K., Nath R., Felser C., Paul A.K. Reentrant magnetism at the borderline between long-range antiferromagnetic order and spin-glass behavior in the B-site disordered perovskite system Ca2−xSrxFeRuO6 // Phys. Rev. B. 2018. V. 98. No. 22. P. 224423.
- 9. Samanta T., Bhobe P.A., Das A., Kumar A., Nigam A.K. Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy // Phys. Rev. B. 2018. V. 97. No. 18. P. 184421.
- 10. Yahne D.R., Pereira D., Jaubert L.D.C., Sanjeewa L.D., Powell M., Kolis J.W., Xu G., Enjalran M., Gingras M.J.P., Ross K.A. Understanding reentrance in frustrated magnets: The case of the Er2Sn2O7 pyrochlore // Phys. Rev. Lett. 2021. V. 127. No. 27. P. 277206.
- 11. Chakraborty S., Gupta Sh., Pakhira S., Choudhary R., Biswas A., Mudryk Y., Pecharsky V.K., Johnson D.D., Mazumdar Ch. Ground-state degeneracy and complex magnetism of geometrically frustrated Gd2Ir0.97Si2.97 // Phys. Rev. B. 2022. V. 106. No. 22. P. 224427.
- 12. Tran L.M., Zaleski A.J., Bukowski Z. Reentrant resistivity due to the interplay of superconductivity and magnetism in Eu0.73Ca0.27(Fe0.87Co0.13)2As2 // Phys. Rev. B. 2024. V. 109. No. 1. P. 014509.
- 13. Вакс В.Г., Ларкин А.И., Овчинников Ю.Н. Модель Изинга при взаимодействии с неближайшими соседями // ЖЭТФ. 1965. Т. 49. No. 4. С. 1180–1189.
- 14. Kitatani H., Miyashita S., Suzuki M. Reentrant phase transitions in the two-dimensional Ising model with competing nearest neighbour interactions // Phys. Lett. A. 1985. V. 108. No. 1. P. 45–49.
- 15. Morita T. Reentrant transition of the Ising model on the centred square lattice // J. Phys. A: Math. Gen. 1986. V. 19. No. 9. P. 1701–1708.
- 16. Azaria P., Diep H.T., Giacomini H. Coexistence of order and disorder and reentrance in an exactly solvable model // Phys. Rev. Lett. 1987. V. 59. No. 15. P. 1629–1632.
- 17. Yokota T. Reentrant and successive phase transitions in the Ising model with competing interactions // Phys. Rev. B. 1989. V. 39. No. 1. P. 523–527.
- 18. Diep H.T., Debauche M., Giacomini H. Reentrance and disorder solutions in exactly solvable Ising models // J. Magn. Magn. Mater. 1992. V. 104–107. P. 184–186.
- 19. Thomas C.K., Katzgraber H.G. Simplest model to study reentrance in physical systems // Phys. Rev. E. 2011. V. 84. No. 4. P. 040101.
- 20. De La Espriella N., Madera J.C., Sanchez-Caraballo A. Reentrant and spin compensation phenomena in an Ising type ferrimagnetic system // Physica A. 2018. V. 511. P. 289–301.
- 21. Diep H.T., Giacomini H. Frustration – Exactly solved frustrated models / Frustrated spin systems. Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. P. 1–62.
- 22. Lajko P., d’Auriac J.-Ch.A., Rieger H., Igloi F. Reentrant random quantum Ising antiferromagnet // Phys. Rev. B. 2020. V. 101. No. 2. P. 024203.
- 23. Kaneko R., Douda Y., Goto Sh., Danshita I. Reentrance of the disordered phase in the antiferromagnetic Ising model on a square lattice with longitudinal and transverse magnetic fields // J. Phys. Soc. Jpn. 2021. V. 90. No. 7. P. 073001.
- 24. Nakano H. Existence of three transition temperatures in decorated triangular and square Ising lattices with anisotropic couplings // Prog. Theor. Phys. 1968. V. 40. No. 2. P. 231–236.
- 25. Fradkin E.H., Eggarter T.P. Ising models with several phase transitions // Phys. Rev. A. 1976. V. 14. No. 1. P. 495–499.
- 26. Jascur M. Exact results for a decorated Ising model // Physica A. 1998. V. 252. No. 1. P. 217–224.
- 27. Strecka J., Rojas O., de Souza S.M. Spin-phonon coupling induced frustration in the exactly solved spin-1/2 Ising model on a decorated planar lattice // Phys. Lett. A. 2012. V. 376. No. 3. P. 197–202.
- 28. Doria F.F., Pereira M.S.S., Lyra M.L. Band-filling driven crossover fromferro to antiferromagnetic order in Ising lattices decorated by quantum dimers // J. Magn. Magn. Mater. 2014. V. 368. P. 98–104.
- 29. Galisova L. Reentrant phenomenon and inverse magnetocaloric effect in a generalized spin-(1/2, s) Fisher’s super-exchange antiferromagnet // J. Phys.: Condens. Matter. 2016. V. 28. No. 47. P. 476005.
- 30. Chen Sh., Wu Y., Lu J., Teng B. Reentrant phenomenon in the decorated Ising model // Phys. Scripta. 2023. V. 98. No. 12. P. 125941.
- 31. Miyazima S., Syozi I. A statistical model of Ising spin with five transition points // Prog. Theor. Phys. 1968. V. 40. No. 1. P. 185–187.
- 32. Miyazima S. Three phase transitions of Ising model // Prog. Theor. Phys. 1968. V. 40. No. 3. P. 462–470.
- 33. Nakano H. Ordering in certain statistical systems of Ising spins // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1121–1132.
- 34. Syozi I. A decorated Ising lattice with three transition temperatures // Prog. Theor. Phys. 1968. V. 39. No. 5. P. 1367–1368.
- 35. Boughrara M., Taifi E., Kerouad M. Phase transition and magnetic properties of a decorated Ising film // Ferroelectrics. 2008. V. 372. No. 1. P. 47–53.
- 36. Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition // Phys. Rev. 1944. V. 65. No. 3–4. P. 117–149.
- 37. Kaufman B. Crystal statistics. II. Partition function evaluated by spinor analysis // Phys. Rev. 1949. V. 76. No. 8. P. 1232–1243.
- 38. Kaufman B., Onsager L. Crystal statistics. III. Shortrange order in a binary Ising lattice // Phys. Rev. 1949. V. 76. No. 8. P. 1244–1252.
- 39. Baxter R.J. Exactly solved models in statistical mechanics. London: Academic Press, 1982. xii, 486 p.
- 40. Statistical mechanics / Ed. R.K. Pathria, P.D. Beale. Academic Press. London, 2021. xxx, 738 p.
- 41. Syozi I. Statistics of kagome lattice // Prog. Theor. Phys. 1951. V. 6. No. 3. P. 306–308.
- 42. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part I // Phys. Rev. 1941. V. 60. No. 3. P. 252—262.
- 43. Kramers H.A., Wannier G.H. Statistics of the twodimensional ferromagnet. Part II // Phys. Rev. 1941. V. 60. No. 3. P. 263—276.
- 44. Baxter R.J. Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model // J. Stat. Phys. 2011. V. 145. No. 3. P. 518–548.
- 45. Montroll E.W., Potts R.B.,Ward J.C. Correlations and spontaneous magnetization of the two-dimensional Ising model // J. Math. Phys. 1963. V. 4. No. 2. P. 308–322.
- 46. Кассан-Оглы Ф.А., Прошкин А.И., Муртазаев А.К., Мутайламов В.А. Декорированная изинговская квадратная решетка в магнитном поле // ФТТ. 2020. Т. 62. No. 5. С. 683–688.
- 47. Kassan-Ogly F.A., Zarubin A.V. Frustration in the Ising model on a decorated square lattice // Phys. Rev. E. 2025. V. 111. No. 4. P. 044133.
- 48. Toulouse G. Theory of the frustration effect in spin glasses: I // Commun. Phys. 1977. V. 2. No. 4. P. 115–119.
- 49. Vannimenus J., Toulouse G. Theory of the frustration effect: II. Ising spins on a square lattice // J. Phys. C: Solid State Phys. 1977. V. 10. No. 18. P. L537–542.
- 50. Introduction to frustrated magnetism: Materials, experiments, theory / Ed. C. Lacroix, Ph. Mendels, F. Mila. Berlin: Springer, 2011. xxvii, 679 p.
- 51. Frustrated spin systems / Ed. H.T. Diep. 3nd edition. Singapore: World Scientific, 2020. xxx, 719 p.
- 52. Kassan-Ogly F.A., Zarubin A.V. Frustrations on decorated planar lattices in Ising model // J. Supercond. Novel Magn. 2022. V. 35. No. 6. P. 1647–1656.