- PII
- S3034621525090105-1
- DOI
- 10.7868/S3034621525090105
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 126 / Issue number 9
- Pages
- 1049-1058
- Abstract
- Despite the continuously expanding volume of experimental data on ultrafine-grained materials produced by severe plastic deformation, the occurrence of competing structure-forming processes (strengthening/relaxation) still requires a theoretical explanation. Based on the analysis of hardness data for technically pure copper subjected to shear under pressure in Bridgman anvils, the staging of strengthening was established. To account for the stochastic nature of the manifestation of relaxation processes during deformation, a model for analyzing material hardness data has been proposed, which is based on three postulates: (a) the structural response to hardness measurement, characteristic of its micro/nanostructural state, including the possible occurrence of a relaxation process, is considered as a random factor; (b) each structural state can be associated with its unique set of responses to hardness measurement; (c) the superposition of structural states is possible. It was shown that each structural response to hardness measurement can be associated with a specific structural state. Meanwhile, the evolution of hardness with applied deformation is a sequential change of combinations of three structural states (cell structure, microcrystalline without significant influence of dynamic recrystallization, and one formed by dynamic recrystallization), which determine the stages of strain hardening.
- Keywords
- интенсивная пластическая деформация медь твёрдость динамическая рекристаллизация
- Date of publication
- 01.11.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 56
References
- 1. Edalati K., Bachmaier A., Beloshenko V.A., Beygelzimer Y., Blank V.D., Botta W.J., Bryla K., ˇC ´ı ˇ zek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janecˇek M., Kawasaki M., Kra´l P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., R´ ev ´ esz A., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances // Mater. Res. Lett. 2022. V. 10. No. 4. P. 163–256. https://doi.org/10.1080/21663831.2022.2029779
- 2. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zechetbauer M.J., Zhu Y.T. Producing bulk ultrafinegrained materials by severe plastic deformation // JOM. 2006. V. 58. P. 33–39. https://doi.org/10.1007/s11837-006-0213-7
- 3. Segal V.M. Review: modes and processes of severe plastic deformation (SPD) // Materials. 2018. V. 11. No. 7. P. 1175. https://doi.org/10.3390/ma11071175
- 4. Voronova L.M., Chashchukhina T.I., Talantsev E.F., Degtyarev M.V., Gapontseva T.M. Advanced modelling tool to extract the structural state boundaries from the hardness-strain experiments // Int. J. Refract. Met. Hard Mater. 2024. V. 122. P. 106719. https://doi.org/10.1016/j.ijrmhm.2024.106719
- 5. Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch Relationship after Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron // Crystals. 2023. V. 13. P. 413. https://doi.org/10.3390/cryst13030413
- 6. Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Direct influence of recovery behavior on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 369–377. http://doi.org/10.1016/j.jmrt.2017.05.005
- 7. Чащухина Т.И., Дегтярев М.В., Романова М.Ю., Воронова Л.М. Динамическая рекристаллизация в меди, деформированной сдвигом под высоким давлением // ФММ. 2004. Т. 98. No. 6. С. 98–107.
- 8. Karamyshev K.Yu., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Dynamic Polygonization in Nickel during High-Pressure Torsion // Phys. Met. Metal. 2025. V. 126. No. 1. P. 101–110. https://doi.org/10.1134/S0031918X24602087
- 9. Degtyarev M.V., Chashchukhina T.I., Voronova L.M. Thermal stability of a submicrocrystalline structure of metals and alloys // Phys. Met. Metal. 2018. V. 119. No. 13. P. 1329–1332. https://doi.org/10.1134/S0031918X18130045
- 10. Talantsev E.F., Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Pilyugin V.P. Piecewise model with two overlapped stages for structure formation and hardening upon high-pressure torsion // Metall. Mater. Trans. A. 2021. V. 52. P. 4510. https://doi.org/10.1007/s11661-021-06403-5
- 11. Wu X.L., Zhu Y.T., Wei Y.G., Wei Q. Strong strain hardening in Nanocrystalline nickel // Phys. Rev. Lett. 2009. V. 103. P. 205504. https://doi.org/10.1103/PhysRevLett.103.205504
- 12. Marulanda Cardona D.M., Wongsa-Ngam J., Jimenez H., Langdon T.G. Effects on hardness and microstructure of AISI 1020 low-carbon steel processed by highpressure torsion // J. Mater. Res. Technol. 2017. V. 6. No. 4. P. 355–360. https://doi.org/10.1016/j.jmrt.2017.05.002
- 13. Zhang J., Gao N., Starink M.J. Microstructure development and hardening during high pressure torsion of commercially pure aluminium: strain reversal experiments and a dislocation based model // Mater. Sci. Eng. A. 2011. V. 528. P. 2581–2591. https://doi.org/10.1016/j.msea.2010.11.079
- 14. Чащухина Т.И., Дегтярев М.В., Воронова Л.М. Влияние давления на эволюцию структуры меди при большой пластической деформации // ФММ. 2010. Т. 109. No. 2. С. 216–224.
- 15. Edalati K., Wang Q., Enikeev N.A., Peters L.-J., Zehetbauer M.J., Schafler E. Significance of strain rate in severe plastic deformation on steady-state microstructure and strength // Mater. Sci. Eng. A. 2022. V. 859. P. 144231. https://doi.org/10.1016/j.msea.2022.144231
- 16. Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Pokryshkina D.K. Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils // Phys. Met. Metal. 2011. V. 111. P. 304–313. https://doi.org/10.1134/S0031918X11020049
- 17. Орлова Д.К., Чащухина Т.И., Воронова Л.М., Дегтярев М.В. Влияние температурно-скоростных условий деформации в наковальнях Бриджмена на формирование структуры в меди технической чистоты //ФММ.2015. Т. 116.№9. С. 1001–1008. https://doi.org/10.7868/S0015323015090132
- 18. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: fundamentals and applications // Prog. Mater. Sci. 2008. V. 53. P. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
- 19. Pereira P.H.R., Figueiredo R.B. Finite element modelling of high-pressure torsion: an overview // Mater. Trans. 2019. V. 60. No. 7. P. 1139–1150. https://doi.org/10.2320/matertrans.MF201906
- 20. Edalati K., Imamura K., Kiss T., Horita Z. Equal-Channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain // Mater. Trans. 2012. V. 53. No. 1. P. 123–127. https://doi.org/10.2320/matertrans.MD201109
- 21. Jonas J.J., Ghosh C., Toth L.S. The equivalent strain in high pressure torsion // Mat. Sci. Eng. A. 2014. V. 607. P. 530–535. https://doi.org/10.1016/j.msea.2014.04.046
- 22. Popov V.V., Popova E.N., Stolbovsky A.V., Pilyugin V.P. The Structure of Nb Obtained by Severe Plastic Deformation and Its Thermal Stability // Mat. Sci. Forum. 2011. V. 667–669. P. 409–414. https://doi.org/10.4028/ www.scientific.net/MSF.667-669.409
- 23. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion // Act. Mater. 2007. V. 55. P. 6039–6050. https://doi.org/10.1016/j.actamat.2007.04.017
- 24. Stolbovsky A. The Use of Finite Mixture Models and EM-Algorithm to Analyze Grain Structure in HPTNanostructured Metallic Materials // IOP Conf. Series: Materials Science and Engineering. 2020. V. 969. P. 012084. https://doi.org/10.1088/1757899X/969/1/012084
- 25. Кузнецов П.В., Столбовский А.В., Беляева И.В. Количественная характеристика межкристаллитных границ в аустенитной нержавеющей стали с ультрамелкозернистой структурой методом кластерного анализа // Физич. мезомеханика. 2023. V. 26.№2. P. 57–78. https://doi.org/10.55652/1683-805X_2023_26_2_57