RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

Model of transient creep for a ferritic-martensitic steel based on the modified θ-projection method

PII
S30346215S0015323025030104-1
DOI
10.7868/S3034621525030104
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 3
Pages
342-353
Abstract
The paper presents the developed model for predicting the behavior of a ferritic-martensitic steel during all creep stages. A modified θ-projection method is proposed as a solution. The main advantages of the method are abilities to model creep curves for a wide range of temperatures and stresses (which reduces the need for long-term run tests); to validate calculations by determining time to failure; to predict a steadystate creep rate. Despite the usefulness of the proposed approach, certain limitations are noted that result in modeling uncertainties. Higher accuracy and robustness can be achieved using a "mechanical equation of state equation" model of Rabotnov type.
Keywords
ферритно-мартенситная сталь метод θ-проекции ползучесть длительная прочность время до разрушения моделирование
Date of publication
13.02.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. ASME Boiler & Pressure Vessel Code, Section III - Rules for Construction of Nuclear Facility Components - Section II - Part D Properties (Customary). ASME 2019 Edition.
  2. 2. Сапунов В.Т. Прогнозирование ползучести и длительной прочности жаропрочных сталей и сплавов ЯЭУ. М.: НИЯУ МИФИ, 2015. 136 с.
  3. 3. Riedel H. Fracture at High Temperature. Berlin: Springer, 1987. 418 p.
  4. 4. Булыгин И.И., Голубовский Е.Р., Трунин И.И. Прогнозирование характеристик ползучести сплавов для ГТД // Проблемы прочности. 1978. № 6. С. 19-21.
  5. 5. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 753 с.
  6. 6. Качанов Л.М. Теория ползучести М.: ФИЗМАТЛИТ, 1960. 455 с.
  7. 7. Evans R., Parker J., Wilshire B. Recent advances in creep and fracture of engineering materials and structures. B. Wilshire and D.R.J. Owen. Pineridge Press, 1982. 135.
  8. 8. Evans R. Statistical scatter and variability of creep property estimates in θ projection method // Mater. Sci. Technol. 1989. V. 5. P. 699-707.
  9. 9. ГОСТ 10145-81. Металлы. Метод испытания на длительную прочность.
  10. 10. Jeyaraj A., Vijayanand V.D., Ganesan V. Grain size effect on creep properties of 304HCu SS and modelling of creep curves using modified theta projection approach // Trans. Ind.National Academy of Engineering. 2021. V. 10.
  11. 11. Peng Yu, Weimin Ma. A modified theta projection model for creep behavior of RPV steel 16MND5 // J. Mater. Sci. Techn. 2020. V. 47. P. 231-242.
  12. 12. Evans M. Sensitivity of the theta projection technique to the functional form of the theta interpolation/extrapolation function // J. Mater. Sci. 2002. V. 37. P. 2871-2884.
  13. 13. Деммел Дж. Вычислительная линейная алгебра. М.: МИР, 2001. 430 с.
  14. 14. Perez J. An alternative method of calibration and prediction for the theta-projection model // ETD Collection for University of Texas. 2019. V. 69.
  15. 15. Srinivasan V., Vanajal J., Choudhary B. Modeling of creep deformation behaviour of RAFM steel // Trans. Ind. Institute of Metals. 2016. V. 69. P. 567-571.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library