RAS PhysicsФизика металлов и металловедение Physics of Metals and Metallography

  • ISSN (Print) 0015-3230
  • ISSN (Online) 3034-6215

INFLUENCE OF SELECTIVE LASER MELTING PARAMETERS AND POST-PROCESSING ON MAGNETIC PROPERTIES OF RING MAGNETIC CORE CABLES MADE OF IRON POWDER

PII
S30346215S0015323025070048-1
DOI
10.7868/S3034621525070048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 126 / Issue number 7
Pages
772-780
Abstract
The work is devoted to the study of the magnetic hysteresis properties of ring-shaped magnetic cores made by selective laser melting (SLM) from iron powder. The dependence of the magnetic properties of the obtained samples on the parameters of additive manufacturing (speed and direction of the laser beam) and on subsequent heat treatment was investigated. It was found that reducing the speed of the laser beam spot movement along the build surface, selecting the direction of the laser beam spot movement along the axis perpendicular to the squeegee, and performing heat treatment leads to an increase in magnetic induction and magnetic permeability and a decrease in specific magnetic losses. This is due to the fact that during annealing, internal mechanical stresses are removed, the gradient of which hinders the movement of domain boundaries during remagnetization. A comparison of the magnetic properties of printed samples and samples made by pressing from the same powder was carried out. It was shown that the pressed samples are inferior to the samples made by SLM in terms of magnetic induction and permeability.
Keywords
селективное лазерное сплавление внутренние напряжения магнитомягкие материалы функциональные материалы аддитивные технологии
Date of publication
18.08.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. ГОСТ Р 57558–2017. Аддитивные технологические процессы. Базовые принципы. Часть 1. Термины и определения: национальный стандарт Российской Федерации. М.: Стандартинформ, 2020. 16 с.
  2. 2. Lee J., An J., Chua C. Fundamentals and applications of 3D printing for novel materials // Appl. Mater. Today. 2017. V. 7. P. 120–133.
  3. 3. Mahmood A., Akram T., Chen H., Chen S. On the Evolution of Additive Manufacturing (3D/4D Printing) // Technologies: Materials, Applications, and Challenges Polymers. 2022. V. 14. P. 1–31.
  4. 4. Асаева А.А., Шарипов Н.И. Современное адаптивное производство // Тенденции развития науки и образования. 2024. № 14. С. 116–118.
  5. 5. Дубинина М.Г. Адаптивное производство в России и за рубежом // Анализ и моделирование экономических и социальных процессов – МКО. 2023. С. 96–103.
  6. 6. Фомин В.М., Голышев А.А., Маликов А.Г., Оришич А.М., Филиппов А. А. Создание функционально-градиентного материала методом адаптивного лазерного сплавления // Прикладная механика и техническая физика. 2020. № 5. С. 224–234.
  7. 7. Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing // Business Horizons. 2017. V. 60. P. 677–688.
  8. 8. Goll D., Vogelgsang D., Pflanz U., Hohs D., Grubesz T., Schur J., Bernthaler T., Kolb D., Riegel H., Schneider G. Refining the Microstructure of Fe-Nd-B by Selective Laser Melting // Physica status solidi (RRL) – Rapid Research Letters. 2018. V. 13. P. 180–190.
  9. 9. Zhukov A.S., Barakhlin B.K., Bobyr V.V., Kuznetsov P.A., Shakirov I.V. The experience of magnets manufacturing from metal powder using a laser // J. Phys.: Conference Series. 2021. V. 1791. P. 1–6.
  10. 10. Volegov A.S., Andreev S.V., Selezneva N.V., Ryzhikhin I.A., Kudrevnykh N.V., Madler L., Okulov I.V. Additive manufacturing of heavy rare earth free high-coercivity permanent magnets // Acta Mater. 2020. V. 188. P. 733–739.
  11. 11. Bremen S., Meiners W., Diallov A. Selective Laser Melting // Laser Technik Journal. 2012. V. 9. P. 33–38.
  12. 12. Hu M.J., Ji L.K., Ma Q.R., Chi Q. Research on Laser Additive Manufacturing Technology and Current Situation // Pet. Pipe Instrum. 2019. V. 5. P. 1–6.
  13. 13. Li H.Q. Laser Additive Manufacturing Technology and Its Application // Sci. Educ. Guide Mid. Term. 2019. V. 35. P. 47–48.
  14. 14. Titsmus H., Kallaste A., Vaimann T., Lind L., Virro I., Rassöllkin A., Dedova T. Laser Additively Manufactured Magnetic Core Design and Process for Electrical Machine Applications // Energies. 2022. V. 15. P. 1–26.
  15. 15. Do D.K., Li P. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting // Virtual Phys. Prototyp. 2016. V. 11. P. 41–47.
  16. 16. Zhang B., Fenineche N.-E., Zhu L., Liao H., Coddet C. Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology // JMM. 2012. V. 324. P. 495–500.
  17. 17. Haines M.P., List F., Carver K., Leonard D.N., Plotkowski A., Fancher C.M., Dehoff R.R., Babu S.S. Role of Scan Strategies and Heat Treatment on Grain Structure Evolution in Fe-Si Soft Magnetic Alloys Made by Laser-Powder Bed Fusion // Additive. Manufacturing. 2022. V. 50. P. 102578–102597.
  18. 18. Geiger F., Kunze K., Eiter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies // Mater. Sci. Eng. A. 2016. V. 661. P. 240–246.
  19. 19. Adamczyk J.M., Birchall S.E., Rohermel E.T., Whetten S.R., Barrick E.J., Pearce C.J., Delaney R.E., Pegues J.W., Johnson K.L., Susan D.F., Monson T.C., Kustas A.B. Characterization of Fe-6Si Soft Magnetic Alloy Produced by Laser-Directed Energy Deposition Additive Manufacturing // JOM. 2024. V. 76. P. 863–874.
  20. 20. Thijs L., Verhaeghe F., Craeghs T., Van Humbeeck J., Kruth J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V // Acta Mater. 2010. V. 25. P. 3303–3312.
  21. 21. Gao B., Zhao H., Peng L., Sun Z. A Review of Research Progress in Selective Laser Melting (SLM) // Micromachines. 2023. V. 14. P. 1–17.
  22. 22. Yadroitsava I., Grewar S., Hattingh D., Yadroitsev I. Residual stress in SLM Ti6Al4V alloy specimens // Mater. Sci. Forum. 2015. V. 828. P. 305–310.
  23. 23. Zyl I., Yadroitsava I., Yadroitsev I. Residual stress in Ti6Al4V objects produced by direct metal laser sintering // South African J. Industrial Eng. 2016. V. 27. P. 134–141.
  24. 24. Жуков А.С., Маннинен С.А., Тит М.А., Олисов А.В., Князюк Т.В., Кузнецов П.А. Исследование структуры и магнитных свойств аддитивного магнитомяткого сплава 80нхс // ФMM. 2023. № 4. C. 353–359.
  25. 25. Riipinen T., Pippuri-Mäkeläinen J., Que Z., Meisä-Korielainen S., Antikainen A., Lindroos T. The effect of heat treatment on structure and magnetic properties of additively manufactured Fe-Co-V alloys // Materials Today Commun. 2023. V. 36. P. 106437–106446.
  26. 26. Goll D., Schuller D., Martinek G., Kunert T., Schurr J., Sinz C., Schubert T., Bernthaler T., Riegel H., Schneider G. Additive manufacturing of soft magnetic materials and components // Additive Manufacturing. 2019. V. 27. P. 428–439.
  27. 27. Simchi A., Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder // Mater. Eng. 2003. V. 359. P. 119–128.
  28. 28. Letenneur M., Brailovski, Kreitcberg A., Paserin V., Bailon-Poujol I. Laser Powder Bed Fusion of Water-Atomized Iron-Based Powders: Process Optimization // J. Manuf. Mater. Process. 2017. V. 1. P. 1–17.
  29. 29. ГОСТ Р 59 184–2020 Аддитивные технологии. Оборудование для селективного лазерного сплавления. Общие требования. Москва: Федеральное агентство по техническому регулированию и метрологии, 2020. 18 с.
  30. 30. ГОСТ 12119.4–98 Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения удельных магнитных потерь и действующего значения напряженности магнитного поля. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1999. 11 с.
  31. 31. ГОСТ 12119.5–98 Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения импульса магнитной индукции и напряженности магнитного поля. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1999. 12 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library