- PII
- S30346215S0015323025070077-1
- DOI
- 10.7868/S3034621525070077
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 126 / Issue number 7
- Pages
- 794-802
- Abstract
- The fractal thermodynamics model was applied for the first time to study the process of temperature-induced transformation of the magnetic domain structure (DS) on the basal plane of an NdFeB single crystal within the temperature range of 20–285 K. This range encompasses a second-order spin-reorientation transition (SRT) from the "easy axis" type of magnetocrystalline anisotropy (MCA) to the "easy cone" type of MCA. A high degree of similarity between the patterns of the NdFeB single crystal's domain structure images and fractals was demonstrated across the entire temperature interval. Specifically, the values of the parameter δ, characterizing the relative deviation of the studied DS from fractals, fall within the range of 1.16·10 to 1.72·10. A notable difference was observed in the character of the temperature dependencies of the fractal parameters D(T), S(T), and T(T) at temperatures below and above the SRT temperature T = 135 K. Furthermore, the temperature behavior of the fundamental constants of the NdFeB compound and the fractal parameters of the DS within the "easy axis" MCA region suggests a possible correlation between them in this temperature range.
- Keywords
- фрактальный анализ магнитная доменная структура температурная трансформация спин-переориентационный переход фрактальная термодинамика
- Date of publication
- 27.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 51
References
- 1. Paramonova E., Kudinov A., Mikheev S., Tsvetkov V., Tsvetkov I. Fractal thermodynamics, big data and its 3D visualization // in Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Dubna, 2021. V. 3041. P. 38–42. URL: https://ceur-ws.org/Vol-3041/38-42-paper-6.pdf
- 2. Dong-Hyun K., Yoon-Chul C., Sug-Bong C., Sung-Chul S. Correlation between fractal dimension and reversal behavior of magnetic domain in Co/Pd nanomultilayers // Appl. Phys. Lett. 2003. V. 82. P. 3698.
- 3. Bathany C., Le Romancer M., Armstrong J.N., Chopra H.D. Morphogenesis of maze-like magnetic domains // Phys. Rev. B. 2010. V. 82. P. 184411.
- 4. Catalan G., Béa H., Fusil S., Bibes M., Paruch P., Barthélémy A., Scott J.F. Fractal Dimension and Size Scaling of Domains in Thin Films of Multiferroic BiFeO // Phys. Rev. Lett. 2008. V. 100. P. 027602.
- 5. Bucher J.P. Magnetic marbles as a model for ferromagnetic particle aggregation: fractal dimensions // European J. Phys. 2000. V. 12. P. 142.
- 6. Арзамасцева Г.В., Евтихов М.Г., Лисовский Ф.В., Мансветова Е.Г. Фрактальная модель сложной приповерхностной доменной структуры высокоэнергичных одноосных монокристаллов // ФММ. 2020. Т. 121. Вып. 5. С. 454–457.
- 7. Hubert A., Schäfer R. Magnetic domains. The analysis of magnetic microstructures. Springer, 1998. 696 p.
- 8. Bao-Shan Han, Dan Li, De-Juan Zheng, Yan Zhou. Fractal study of magnetic domain patterns // Phys. Rev. B. 2002. V. 66. P. 014433. https://doi.org/10.1103/PhysRevB.66.014433
- 9. Mikheev S.A., Semenova E.M., Pastushenkov Yu.G., Tsvetkov V.P., Tsvetkov I.V. Fractal Properties of the NdFe Alloys Surface in the Fractal Thermodynamics Model // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2024. V. 18. No. 2. P. 354–360.
- 10. Pastushenkov Yu.G., Forkl A., Krommüller H. Temperature dependence of the domain structure in FeNdB single crystals during the spin-reorientation transition // J. Magn. Magn. Mater. 1997. V. 174. P. 278–288.
- 11. Пастушечков Ю.Г. Некоторые особенности перестройки магнитной доменной структуры в области ориентационных фазовых переходов первого и второго рода // Изв. РАН. Серия физическая. 2010. Т. 74. № 10. С. 1483–1485.
- 12. Pastushenkov Y.G. Magnetic domain structure and spin reorientation process // Zeit. Metallkunde. 2002. V. 10. P. 991–996. https://doi.org/10.1515/jimr-2002-0172
- 13. Seifert M., Schulz L., Schäfer R., Hankemeier S., Frömer R. Micromagnetic investigation of domain and domain wall evolution through the spin-reorientation transition of an epitaxial NdCo film // New J. Phys. 2017. V. 19. P. 033002. https://doi.org/10.1088/1367-2630/aad045
- 14. Tsvetkov V.P., Mikheev S.A., Tsvetkov I.V. Fractal phase space and fractal entropy of instantaneous cardiac rhythm // Chaos, Solitons and Fractals. 2018. V. 108. P. 71–76. https://doi.org/10.1016/j.chaos.2018.01.030
- 15. Hock S. Züchtung und magnetische Eigenschaften von (FeAl)(NdDy)FeB. Einkristallen: MPI-Stuttgart, 1988. 127 p.
- 16. Givord D., Li H.S., Perrier de la Bathie R. Magnetic Properties of YFeB and NdFeB Single Crystals // Solid State Commun. 1984. V. 51. P. 857–860.
- 17. Mushnikov N.V., Terent'ev P.B., Rosenfeld E.V. Magnetic Anisotropy of the NdFeB Compound and Its Hydride NdFeBH // Phys. Met. Metal. 2007. V. 103. No. 1. P. 39–50.
- 18. Pastushenkov Yu.G., Skokov K.P., Suponev N.P., Stakhovski D. Low-temperature magnetization distribution and magnetization reversal in Fe-Nd-B permanent magnets // J. Magn. Magn. Mater. 2005. V. 290. P. 644–646.
- 19. Федер Е. Фракталы. М.: Мир, 1991, 254 с.
- 20. Livingston J.D., McConnel N.D. Domain-wall energy in cobalt-rare-earth compounds // J. Appl. Phys. 1972. V. 43. P. 4756–4762.
- 21. Bodenberger R., Hubert A. Zur Bestimmung der Blochwandenergie von einachsigen Ferromagneten // Phys. Stat. Sol. (a). 1977. V. 44. P. K7–K11.
- 22. Kronmüller H., Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, 2003. 432 p.
- 23. Schäfer R. Magnetic domains. In Handbook of magnetism and magnetic materials / Ed. M. Coey, Parkin S.P. Springer. 2021. P. 409. ISBN 978-3-030-63210-6 (eBook).
- 24. Sinkevich A.I., Lyakhova M.B., Semenova E.M. The energy of 180° domain walls of uniaxial crystals with the different magnetocrystalline anisotropy type // J. Magn. Magn. Mater. 2024. V. 610. P. 172560.
- 25. Herbst J.F., Croat J.J., Yelon W.B. Structural and magnetic properties of NdFeB // J. Appl. Phys. 1985. V. 57. P. 4086–4090.